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Chapter 1 :Electric Fields:

* Outlines:

v'Electric charges,

v'Coulomb's law,

v'Electric field,

v’ Electric field of a continuous charge distribution,

v’ Motion of charged particles in a uniform electric field
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Coulomb’s Law

* Charles Coulomb measured the magnitudes of the electric forces
between charged objects.

* Coulomb’s law is an equation giving the magnitude of the electric
force (sometimes called the Coulomb force) between two point
charges:

F=h |Q’1|L*§’E|

r

where k.is a constant called the Coulomb constant.

k,= 8.987 6 X 10° N - m?/C?
This constant is also written in the form

1 where &, the constant is known as the permittivity of free

space and has the value _19 ¢
¢, = 8.8542 X 1072 CY/N - m?

k. =
‘ i.I:TT'Eﬂ



IELIGVERES  Charge and Mass of the Electron, Proton, and Neutron

Particle Charge (C) Mass (kg)

Electron (e) —1.602 176 5 x 1019 0.109 4 x 10-31
Proton (p) +1.602 176 5 x 1019 1.672 62 x 10-27
Neutron (n) 0 1.674 93 x 10-27

The Hydrogen Atom

The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately
5.3 % 107" m. Find the magnitudes of the electric force and the gravitational force between the two particles.

le||—el (1.60 x 107" C)?
F.=k, = (8.988 ¥ 10° N-m*/C*
T’ [ m?/C%) (5.3 x 107" m)*
= 8.2x 108N
m_m
_ e'p
F;: = G 2

r

(9.11 x 10" * kg)(1.67 x 10~ * kg)
= (6.674 X 107" N-m*/kg”
( m*/kg’) (5.3 107" ' m)*

= 36x 100YN



When the charges are of the

same sign, the force is repulsive.
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When the charges are of opposite

signs, the force is attractive.

DO NOT FORGET !
\

Force 15 vector quantity so.
T o1 1%,

where 7 15 a unif vector directed from g toward g, or from g, toward q.

When more than two charges are present, the force between any pair of them is
given by Equation 23.6. Therefore, the resultant force on any one of them equals the
vector sum of the forces exerted by the other individual charges. For example, if four
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

—

F]:

— —» —
Foy + Fay + Fy



Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in
Figure 23.7, where g, = g3 = 5.00 pC, g, = —2.00 pC, and a = 0.100 m. Find the

resultant force exerted on -

B |E}2||E}'s|
23 (; {IE
2.00 % 107°C)(5.00 x 10°°C
— (8.988 % 10°N-m%/C?) ( )( ) — 8.99 N
(0.100 m)?
|I‘1j"1||ﬂj"3|
Fo =k ———
. {\/E a)’
(5.00 % 107°C)(5.00 x 107°°C) p
= (8.988 ¥ 10°N-m?/C? — 112N 7
[ m’/C) 2(0.100 m)? : e
Fis, = (11.2 N) cos 45.0° = 7.94 N . @*”

Fig, = (1.2 N) sin 45.0° = 7.94 N

Fy, = Fig, + Fyg, = 794N + (—8.99N) = —1.04N
Fy, = Fig, + Fys, = 794N + 0 = 794N

— - A
F; = (—1.04i + 7.94j) N



Electric Field

» If an arbitrary charge g is placed in an electric field E, it experiences an electric force given by

F,=gE

» The electric field is said to exist in the region of space around a charged object (the source charge). When
another charged object (the test charge) enters this electric field an electric force acts on it.

» \We can know the direction of the electric field from the charge g if q is positive, the force is in the same
direction as the field. If g is negative, the force and the field are in opposite directions.

Consider a point charge g as a source charge. This charge creates an electric field at all points in
space surrounding it. A test charge is placed at point P, a distance r from the source charge, as in

Figure. According to Coulomb’s law, the force exerted by g on the test charge is: ©
- qq- . L , P
FE — .II.SE 2 T +/ N
£ . = q E
the electric field created by q is: E =k, — F 3
.lr-| '-‘J-‘—



O Electric field at point P due to a group of point charges:
At any point P, the total electric field due to a group of source charges equals the vector sum of the electric fields of all the

E=kﬂzq_;ﬂ
T,

is the distance from the i"source charge g, to the point P.

charges.

Where
Ti

If gis positive,
the force on
the test charge
iy 1s directed
away from q.

For a positive
source charge,
the electric
field at P points
radially outward
from q.

=1l

If gis negative,
the force on
the test charge
iy 18 directed
toward 4.

For a negative
source charge,
the electric
field at F points
radially inward
toward g.



Example 23.5 Electric Field Due to Two Charges

A charge g, = 7.0 uC is located at the origin, and a second J

charge go = — 5.0 puC 1s located on the x axis, (.30 m from

the ongin (Fig. 23.14). Find the electric field at the point P, E,

which has coordinates (0, 0.40) m.
|

o, (7.0 X 107°C
E = k{,|q—12 — (8.99 X 10 N-m2/C2) < - )
r (0.40 m)

=39 X 10°N/C

L o, (5.0X107°C
EQ = k(a |qu2| = (899 X 10(2) NmQ/CZ) (D = 2 ) P
re (0.50 m)

=1.8 X 10°N/C

The vector Ej has only a y component. The vector Eo has an
x component given by Eo cos 6§ = %E? and a negative y

component given by — Eo sin 6 = —%Eg . Hence, we can 0.40 m

express the vectors as
E, = 3.9 X 10°j N/C

E; = (1.1 X 105 — 1.4 X 10%j) N/C

The resultant field E at P is the superposition of E; and Eo: -

A
.

E=E +E, = (1.1 X 10% + 25 X 10°)) N/C




Example : Electric Field of a Dipole

An electric dipole is defined as a positve charge g and a

negative charge — g separated by a distance 2a. For the dipole
shown in Figure 23.15, find the electric field E at P due to the
dipole, where Fis a distance y == a from the origin.

E, = kf% cos i + EFL cos il = EREL COS

a- +y a® + }'E a’ +f
ET:.-’.‘T% Sinﬂ—kf% sin i = 0
- a- +y a- + y°
a a
cosfl = — =

¥ [{IE + :}IE}I;‘E

;
2 ;'rr
b= 2k, Ej}r 2 L 2 - E}l.r‘E] - k,( 2 ﬂqﬂ}sm /!
a Ty a- +y a +y Nﬂi
@
% W
- y == a, neglect a’ - E= Fk f q

¥
the magnitude of the electric field created by the dipole varies as 1/7%,

&



Electric Field of a Continuous Charge Distribution P oA

» The electric field at P due to one charge element carrying charge Aq is ) /Fs

Ag VY
_2 r ap
" . .

AE =k

where ris the distance from the charge element to point P and ¥ is a unit vector directed from the element
toward P. The total electric field at P due to all elements in the charge distribution is approximately

where the index i refers to the ith element in the distribution. Because the number of elements is very large
and the charge distribution is modeled as continuous, the total field at P in the limit Ag— O is

E =k lim >



» If a charge 0i1s uniformly distributed throughout a volume V, the volume
charge density p is defined by

Q

Volume charge density » = v

where p has units of coulombs per cubic meter (C,/m?).

» If a charge @ is uniformly distributed on a surface of area A, the surface

charge density 7 (Greek letter sigma) is defined by

Surface charge density b g=—
where ¢ has units of coulombs per square meter (C/m?).

* If a charge Q is uniformly distributed along a line of length £, the linear
charge density A is defined by

Linear charge density b A==

where A has units of coulombs per meter (C/m).

* If the charge i1s nonuniformly distributed over a volume, surface, or line, the
amounts of charge dg in a small volume, surface, or length element are

dg=pdV dg=ocdA  dg= A de



The Electric Field Due to a Charged Rod

A rod of length £ has a uniform positive charge per unit length A
and a total charge (. Calculate the electric field at a point P that
is located along the long axis of the rod and a distance a from

one end (Fig. 23.15).

k.Q

al€ + a)




The Electric Field of a Uniform Ring of Charge

A ring of radius a carries a uniformly dis-
tributed positive total charge (). Calcu-
late the electric field due to the ring at a
point Plying a distance x from 1ts center
along the central axis perpendicular to

the plane of the ring (Fig. 23.16a).

d
(1) dEx:kEgctusﬁ:kerqxﬂcusﬂ b
WHAT IF?
(2) cosf = - (2 +’T 5173 »This result shows that the field is zero at x = 0.
r s X
Lol -t

dlb — k =1 = _ ] i

&+ x| (a® + xP)VE (a® + x7)** 4 let x <= @, which results in

B k.x - k, x k Q
E, = I {ﬂz N xz}a,fg dg = {ﬂg + xﬂ}yg f dq EI — T X

€l

: ! ]
(3) E= oo

2 233 /2 Q . . . .
(a® + x%) reduces to k,Q) /x if x > a, so the ring acts like a point charge




The Electric Field of a Uniformly Charged Disk

A disk of radms i/ has a vniformm surface charge density o Calculate the clectrsc
ficld at a poine P that lies along the coemneral perpendicular axis of the disk and a
distance x from the center of the disk (Fag. 285 17 )

dg = o dA = o(2mr dr) = 2rordr

= k xo inl[r’ + )" r?)

B (o 4 AE)VER B .
i L a Eﬂ'”[l (R® + J}”‘]



Electric Field Lines

Convenient way of visualizing electric field patterns is to draw lines, called electric field lines and first introduced
by Faraday, that are related to the electric field in a region of space in the following manner:

» The electric field vector E is tangent to the electric field line at each point.The line has a direction,
indicated by an arrowhead, that is the same as that of the electric field vector.

» The number of lines per unit area through a surface perpendicular to the lines is proportional to the

magnitude of the electric field in that region.

The magnitude of the
field 1s greater on surface
A than on surface B.

For a positive point charge, For a negative point charge,
the field lines are directed the field lines are directed
radially owtward. radially inward.
) —if
.|_ [—



Electric Field Lines

The number of field lines leaving Two field lines leave +2q for every
the positve charge equals the one that terminates on —q.
number terminating at the

negative charge.

o

+2 —q




Motion of a Charged Particle in a Uniform
Electric Field

When a particle of charge g and mass m is placed in an electric field E, the electric force exerted on the charge is

gEaccording to Equation F = gE in the particle in in the particle in a field model. If that is the only force exerted on
the particle, it must be the net force, and it causes the particle to accelerate according to the particle under a net force

model. Therefore:

F

gE = ma =

E
q
and the acceleration of the particle is l
F =gE

*
. gE

H |
I

QO If E is uniform (that is, constant in magnitude and direction), and the particle is free to move, the electric force on the particle is
constant and we can apply the particle under constant acceleration model to the motion of the particle. Therefore, the particle in
this situation is described by three analysis models:

v' Particle in a field,

v’ particle under a net force,

v and particle under constant acceleration.

O If the particle has a positive charge, its acceleration is in the direction of the electric field.

O If the particle has a negative charge, its acceleration is in the direction opposite the electric field.



el [GERDLE An Accelerating Positive Charge: Two Models

A uniform electric field E is directed along the x axis between parallel plates of charge
separated by a distance d as shown in Figure 23.23. A posiuve point charge g of mass m is
released from rest at a point @ next to the positive plate and accelerates to a point ® next to
the negative plate.

(A) Find the speed of the particle at ® by modeling it as a particle under constant
acceleration.

va = v’ + Ea{xf— x;) = 0+ 2ald — 0) = 2ad

o \[o(E)a- [

(B) Find the speed of the particle at ® by modeling it as a nonisolated system in terms of energy.

W= AK

2F, Ax

m

EAx=Kg— K{E:%mqf—ﬂ — U=

_ [2(gE)(a@) _  [2qEa
U"Ir_ m B m

_ﬁ
E
=
v=10 v —
- -3
® ®
A=
-
= d -




Chapter 2 :Gauss’s Law

Outlines:
v Electric Flux

v’ Gauss’s Law
v Application of Gauss’s
v’ Law to Various Charge Distributions

v Conductors in Electrostatic Equilibrium



1-Electric Flux

Consider an electric field that 1s uniform m both magnitude and direction, as
shown 1n Figure.

The field lines penetrate a rectangular surface of area 4, whose plane 1s
ortented perpendicular to the field. Note that the number of lines per unit area
15 proportional to the magnitude of the electric field. Therefore, the fotal
number of limes penetrating the surface 1s proportional to the product £4.
Thas product of the magnitude of the electric field £ and surface area 4
perpendicular to the field 1s called the electric flux ¢p.

{[) F= EA

_/

*

[YYyyrryr

.|.._
-'E'Iii-
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.i" F r % {* ’; !

e =0 o

Figure 24.1 Field lines repre-
senting a uniform electric field
penetrating a plane of area per-
pendicular to the field.



1-Electric Flux

» If the surface under consideration is not perpendicular to the field, the flux

through it must be less than that given by ® = EA where the normal to the surface of
area A is at an angle u to the uniform electric field. Notice that the number of lines that
cross this area A is equal to the number of lines that cross the aread |,

P, = FEA, = FEAcos#
» In more general situations, the electric field may vary over a large surface

D, = E AA, cos b, = E) . _“;Ef

Therefore, the general definition of electric flux is:

surface

(surface integral)

The number of field lines that
go through the area A, is the
same as the number that go
through area A

Mormal

A i

: A

H_\ 2 -.IH
-y Flé —
I|_ E

S w f
A T

Figure 24.2 Field lines repre-
senting a uniform electric field
penetrating an area A whose nor-
mal is at an angle § to the field.

The electric field makes an angle
#, with the vector ﬁ, defined as
being normal to the surface
element.

8,
MA;

Figure 24.3 A small element of
surface area AA; in an electric field.



» When an area is constructed such that a closed surface is
formed, we shall adopt the convention that the flux lines
passing into the interior of the volume are negative and
those passing out of the interior of the volume are positive.

Example 24.1 Flux Through a Cube

Consider a uniform electric field E oriented in the x direction in empty
space. A cube of edge length £ 1s placed in the field, oriented as shown in
Figure 24.5. Find the net electric flux through the surface of the cube.

0= | Boak+ [ E0d

Jf'di=JE(coleﬂ°)M=—EJr:Lrl:—E'l:—EE'E & @
1 1 1 ¢ v
i LK
..‘-1____-’ N —
JE’@K =JE(-:05D°)¢M=EJ dA = +EA = Ef2 e ’ > i,
? 2 ? O A
z/ ¢ / i \@)
Gp= B+ EC+0+04+040= 0 & v,

3

:

The elecwric

flux through
this area
element is
negatve.

The electric
flux through
this area
element is
EEro.

The electric
thax through
this area
element is
positive.



2-Gauss’s Law

» we describe a general relationship between the net electric flux through a closed surface (often called a gaussian
surface) and the charge enclosed by the surface. This relationship, known as Gauss s law, is of fundamental
importance in the study of electric fields.

» we know that the magnitude of the electric field everywhere on the surface of the sphere is
E=Kq/r

» The field lines are directed radially outward and hence are perpendicular to the surface at When the charge is at the center
every point on the surface. That is, at each surface point, E is parallel to the vector AA jﬁ,ji‘:ﬁfﬁﬁjjlﬁgﬁfj feld s
representing a local element of area AA: surrounding the surface point. and constant in magnitude.

= ru Spherical £
E ' ﬁ;‘ié — E fﬁ.f’lé ggussian ﬁ:{i

surface

the net flux through the Gaussian surface is \ )
—F — ) ) \ r'fz
fll'E:']EE-dAZ'jghdﬂZﬁ'jgdﬂ ;

The surface is spherical $dA = A = 47r?

that k, = 1,/4
by = kEiE (477%) = 47k,q atk, = 1/4me,,
r

P, = — the net flux through the spherical surface is
EQ proportional to the charge inside the surface




where E is the total electric field a any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges. Con-
sider the system of charges shown in Figure 24.9. The surface § surrounds only
one charge, g;; hence, the net flux through §1is ¢, /e;. The flux through § due
to charges ¢y, gs, and g, outside it is zero because each electric field line from
these charges that enters § at one point leaves it at another. The surface §' sur-
rounds charges g, and gs; hence, the net flux through it 18 (¢, + ¢)/€;. Finally, the
net flux through surface §" is zero hecause there is no charge inside this surface.
That is, all the electric field lines that enter §" at one point leave at another. Charge
¢, does not contribute to the net flux through any of the surfaces.

The mathematical form of Gauss’ law is a generalization of what we have just
described and states that the net flux through any closed surface is

%:§ﬁﬁz:&

€p

Charge g4 does not contribute to
the flux through any surface
because it is outside all surfaces.

S s
+ @

=

SF
43

S.ﬂ'

Figure 24.9 The net electric
flux through any closed surface
depends only on the charge inside
that surface. The net flux through
surface Sis g, /€g, the net flux
through surface §' is (g, + g4)/€,,
and the net flux through surface
5" is zero.



The net electric flux is the
same through all surfaces.

Figure 24.7 Closed surfaces of
various shapes surrounding a posi-
tive charge.

The number of field lines
entering the surface equals the
number leaving the surface.

‘\

Figure 24.8 A point charge

located outsidea closed surface.



EXAMPLE: Flux Due to a Point Charge

A spherical Gaussian surface surrounds a point charge g. Describe what happens to the total flux through
the surface if:

(A) the charge is tripled,
(B) the radius of the sphere is doubled,
(C) the surface is changed to a cube,

(D) the charge is moved to another location inside the surface.



A Spherically Symmetric Charge Distribution

 An insulating solid sphere of radius a has a uniform volume charge density p
and carries a total positive charge Q as in figure below

Gaussian
sphere

T T Gaussian
/ sphere

A. Calculate the magnitude of the electric field at a point outside the sphere.
B. Find the magnitude of the electric field at a point inside the sphere.



Solution - _ 0
(A) P

fﬁﬂm = fijdA = E(4mr°) = L

€j

E = = 'k, (forr = a)

ey

(B) " In this case the Gaussian surface of volume V" is less than Q == g, = pV = p[%ﬂ'?ﬁ}

F= q'm o .U'[%HT%} o ,U'
S o ' r
de,r” 4Amert 3¢

p = Q/3ma’ and €, = 1/47k

/sma’
o 2/ r= k—r (forr < a)

3(1/47k,) a




U'LEARIES  Suppose the radial position r = a is approached from inside the
sphere and from outside. Do we obtain the same value of the electric field from
both directions?

the electric field approaches a value from the outside given by:

. Qy_ . @
E= 1‘_‘?1("‘*?2 ~ ke
the electric field approaches a value from the inside given by:

E = lim (kegﬂ r) = kr%ﬂ = kegg

r*a {r ) {1




A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive charge of infinite length and constant charge per unit length
A

-' — —+ qiu
Gp= P E-dA =E¢dA=FEA=— i
>aussian
surface

E(2mr€) = Al \




Find the electric field due to an infinite plane of positive charge with uniform
surface charge density o.

A gaussian surface that reflects the symmetry is a small cylinder whose axis is perpendicular to the plane and
whose ends each have an area A and are equidistant from the plane. Because Esis parallel to the curved
surface of the cylinder and therefore perpendicular to dA

at all points on this surface

. -..J'! [
"'1.:-':" e 1
T
: i TA e Y
b, = 264 = 12 = s
E | “* L
Eﬂ. E” III| Jx "'7’,-""
! *’ |
0« ¥ H“'Ih.\‘t
Naw®™  x *l g
il DR L
o N xy ¥ - 4
= 9 hox 2T
u N — Caussian
E'Eﬂ Ll surface

Figl.IF'E' 2413 (Exampl: 24.5) A
cylindrical gaussian surface pen-
cirating an mfinite plane of charge.
The: flux s EA through cach end
of the gaussian surface and rero
through its curved surface.



Conductors In Electrostatic Equilibrium

» Agood electrical conductor contains charges (electrons)
are not bound to any atom and therefore are free to move about within the material.
« When there is no net motion of charge within a conductor, the conductor is in

A conductor in electrostatic equilibrium has the following properties:
1. The electric field is zero everywhere inside the conductor.
2. If an isolated conductor carries a charge, the charge resides on its surface.

3. 3. The electric field just outside a charged conductor is perpendicular to the surface of the conductor
and has a magnitude o/¢,, where o Is the surface charge density at that point.



Chapter 3 :Electric Potential

Outlines:

v' Potential energy and electric potentiall,

v" Electric potential difference in a uniform electric field,

v' Electric potential due to point charges,

v Obtaining the value of the electric field from the electric potential,
v" Electric potential due to continuous charge distributions,

v" Electric potential due to charged conductor,

v" Application of electrostatics.



Potential energy and electric potential

» When a test charge g, is placed in an electric field created by some source charge distribution, the electric force
acting on the test charge is F = gy E. The force is conservative because the force between charges described by

Coulomb's law 1S conservative.
» When the test charge is moved in the field by some external agent, the work done by the field on the charge is equal
to the negative of the work done by the external agent causing the displacement.

» For infinitesimal displacement ds of a charge, the work done by the electric field on the charge is:

W, = F,d3 = ¢E a3
» The potential energy of the charge—field system is changed by an amount :
dU=-Wy = —¢E +d3
» For a finite displacement of the charge from point A to point B, the change in potential energy of the

system AU =Ug — U, is:
':El—}
AU = —g[ E-ds
'@

> The potential energy per unit charge U/q, is independent of the value of g, and has a value at every point in
an electric field, is called the electric potential (or simply the potential) V.
U

V= 7 the unit of electric potential is volt—




Potential energy and electric potential

» The potential difference between two points A and B in an electric field is defined as the change in electric
potential energy of the system when a charge q is moved between the points :

» The potential energy per unit charge U/q, is independent of the value of g, and has a value at every point in
an electric field, is called the electric potential (or simply the potential) V. Thus, the electric potential at any
point in an electric field is

> Potential energy is a scalar quantity, and The electric potential also is a scalar _gquantity.

» The electric field is a measure of the rate of change of the electric potential with respect to position.

» Electric field lines always point in the direction of decreasing electric potential.



Potential energy and electric potential

A unit of energy commonly used in atomic and nuclear physics is the electron volt (eV), which is defined as the energy
a charge—field system gains or loses when a charge of magnitude e (that is, an electron or a proton) is moved through a
potential difference of 1 V.

1eV=160x10"9C V=160 10"1]

Example :How would you describe the potential difference Av = 1 — 1} ?

=4

a) It is positive.
b) Itis negative.
c) Itiszero

How would you describe the change in potential energy of the charge-field .
system for this process?



Potential Difference in a Uniform Electric Field

» The electrostatic force is conservative. As in mechanics, work is

» \Work done on the positive charge by moving it from Ato B

W = Fd cos 3 =gEd

The work done by a conservative force equals the negative of the
change in potential energy APE

APE =-W = —gEd

» This equation is valid only for the case of a uniform electric field.

When a pasitive charge moves When an object with mass moves
from point @ to poin @, the from point @ to point @, the
electric potential energy of the gravitational potential energy of
charge-field system decreases. the object-field system decreases.
[ [
1 |
d d
+ m
® ®
YYvyYvyy Yy Yy
i i

a b



Potential Difference in a Uniform Electric Field

» Now consider the more general case of a charged particle that moves between A and B in a uniform electric

field such that the vector s is not parallel to the field lines, as shown in the Figure below.

» A uniform electric field directed along the positive x axis. Point B is at a lower  puine @) is ar 2 lower electric

electric potential than point A. Points B and C are at the same electric potential than point @.

=1l

potential. Then:

The change in potential energy of the charge—field system is

A= gﬂﬂ’r: —gﬁ *8 Points B and © are at the

same electric potential.



The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potenual difference AVbetween its terminals and establishes that potential difference between
conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 25.5.
The separation between the plates is d = 0.30 cm, and we assume the electric field between the plates to be uniform.
(This assumption 1s reasonable if the plate separation is small relative to the plate dimensions and we do not consider
locations near the plate edges.) Find the magnitude of the electric field between the plates.

_ Ve — Val 12v

E —
d 0.30 % 10 * m

= 4.0 % 10°V/m




Example 25.2 Motion of a Proton in a Uniform Electric Field m

A proton is released from rest at point @ in a uniform electric field that has a
magnitude of 8.0 x 10* V/m (Fig. 25.6). The proton undergoes a displacement
of magnitude d = 0.50 m to point @ in the direction of E. Find the speed of the
proton after completing the displacement.

AK+ AU=0

(fmv® — 0) + eAV=10

- f'—EsﬁF_\/—Es[—E-:f}  [2ekd
v m N m N m

\/E{l.ﬁ % 1079 C)(8.0 % 10* V)(0.50 m)
U= -
1.67 % 107" kg

= 928 x 10°m/s

1 ?IEI:{]
|
|
|
|
|
d |
|
|
|

_r_él?@
e - -

Figure 25.6 (Example 25.2) A
proton accelerates from @ to B in
the direction of the electric field.




Electric Potential and Potential Energy Due to Point Charges

If we have an isolated positive point charge g, produces an electric field directed
radially outward from the charge. To find the electric potential at a point located
a distance r from the charge, let’s begin with the general expression for potential

difference: &
Vg — Vp = —[ E-ds
<
At any point in space, the electric field due to the point charge is

E-d¥ =hL¢-d%
r
The expression for the potential difference becomes:

e dr q
Ve — Va = —k,g[ — = k*'_r

Jrg T

1 1
o ve =kl - L

Ta

Ta

'® '@
> the electric potential due to a point charge at any distance r from the
charge is: q |
= k. — The two dashed circles represent
“r intersections of spherical equi-

potental surfaces with the page.

» For a group of point charges, the total electric potential at P in the form:
i
F il il
Tk E T



Electric Potential and Potential Energy Due to Point Charges

A potential k_g, /7,5 The potential energy of

» The potential energy of two particles, separated by a distance ry, exiss at point Pdue t© the pair of charges is
charge q,. given by k g, 45/
E I A

qu. fg -7 i1 g -7 71

Fa

U=k,

v, =k L
> Note that if the charges are of the same sign, U is positive. This is consistent with " 7%

the fact that positive work must be done by an external agent on the system to bring
the two charges near one another (because charges of the same sign repel).

» |If the charges are of opposite sign, U is negative; this means that negative work is

done by an external agent against the attractive force between the charges of
opposite sign as they are brought near each other;a force must be applied opposite

to the displacement to prevent g, from accelerating toward g, . .

» the total potential energy of the system of three charges shown in Figure below: g Va3

n ngT=—r N
- kp(fmz L 0% f.waj ~-32

LS Fs Tag




Example 25.3 The Electric Potential Due to Two Point Charges

As shown in Figure 25.10a, a charge ¢, = 2.00 pC is
located at the origin and a charge g, = —6.00 uC is
located at (0, 3.00) m.

(A) Find the total electric potential due to these charges
at the point P, whose coordinates are (4.00, 0) m.

(B) Find the change in potential energy of the system of two charges plus a third charge g5 = 3.00 pC as the latter

charge moves from infinity to point P (Fig. 25.10b).

¥

|

= —6.00 uC
1

2.00 uC  3.00 uC

=— 400 m 4"



SOLUTION

_ (&
Ve = ke (’-"1 " ’-"2)

Ve = (B.OBS x IDQH-mEfEE)(

2.00 % 107°C N —6.00 x 107° ::)
4.00 m 5.00 m

= —6.20 x 10°V

Uy = g5V

AU= U, — U= g5V, — 0 = (3.00 x 1075 C)(—6.20 x 10°V)
= —1.80 x 1072]



Obtaining the Value of the Electric Field from the Electric
Potential

» In this section, we'll show how to calculate the value of the electric field if the electric potential is known in a
certain region. As we seen ,The electric field and the electric potential are related as:

B—}
ﬂlf’=—f E.ds

A
— dV = —E.ds
> If the electric field has only one component E,
] dV
I, = - ™

That is, the x component of the electric field is equal to the negative of the derivative of the electric potential with respect
to X. Similar statements can be made about the y and z components.

» The electric field components E, E and E, can readily be found from V(x, y, z) as the partial derivative

W

..r1||- ..l_' .
0x 0y 0z

- —_— —_—

X



Electric Potential Due to Continuous Charge Distributions

» \We consider the potential due to a small charge element dq, treating this element as a point
charge then the electric potential dV at some point P due to the charge element dq is

] dg

dV = F, g,
y T
K L

i &

T rE,-'I R

we can E?X])I'E'SS I as N A
-'Ir;j dqy,
.rf-’f R

V= f g P
5



Seluhl Qw9 The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign
separated by a distance 2a as shown in Figure 25.13. The dipole is along the x axis

and 1s centered at the origin.

(A) Calculate the electric potential at point Pon the y axis.

lp—qu‘—k(v_,L m):

(B) Calculate the electric potential at point Ron the positive x axis.

i - Eﬁi a
F"=k,.2%=ke( ! + : ): - *‘5"2

x—a x4+ a ¥ — a

(C) Calculate Vand E_ at a point on the xaxis far from the dipole.

2k.qa 2k, qa
Vy = lim (— n 1 )E l';-' (x==a)

?
X e I

XT — il




Electric Potential Due to a Uniformly Charged Ring

(A) Find an expression for the electric potential at a point Plocated on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Sk b

k. k.Q

lrr:—J‘ f—
"-.,h::‘"’+.={'E dg "l.,-"1:2+:.u:E

(B) Find an expression for the magnitude of the electric field at point P.

av d ¢ 2y-1/2
E,= —=—k,0—(a + x

= —kQ(—7)(a* + x*)7¥(2x)

B k.x
o {EE _|_x2 ]SfEQ

E,



Example 25.6 Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density .

(A) Find the electric potential at a point Palong the perpendicular central axis of the disk.

dg = o dA = o(2wrdr) = 2wordr

~ kdg  R2mordr
'Vr“* + x° v 4 x°

dV

. 2rdr

V= ’.ITJIE,U"[ -
0 ‘VTE + x*

i
= irr.fz*,crj (r® + x*)""* 2rdr
LI}

V= 2mkal(R*+ x*)V% — x]

This integral is of the common form _[u"‘ du, where

v

n= —sand u = r? + x2, and has the value u""/(n + 1).

(B) Find the x component of the electric field at a point Palong the perpendicular central axis of the disk.

dV X
E, = = Eﬂhﬂll — o xE]”E]




» Electric Potential Due to a Charged Conductor

» From Gausses law, we found that when a solid conductor in equilibrium it carries a net
charge, the charge resides on the outer surface of the conductor, and that the field inside is
Zero.

» Consider two points A and B on the surface of a charged conductor, as

Notice from the spacing of the

shown In Figure below. positive signs that the surface
charge density is nonuniform.
B
I-"rlr; — 171 = _f E‘ ds = 0
A
%
: . : .
» E is always perpendicular to the displacement ds; therefore E+ ds = 0. &0 |
* ES
. 8 AL
» Therefore, V is constant everywhere on the surface of a charged conductor i 4
UG

in equilibrium.



One important application of
electrical discharge in gases is the
electrostatic  precipitator.  This
device removes particulate matter
from combustion gases, thereby
reducing air pollution.
Precipitators are especially useful
in coal-burning power plants and
industrial operations that generate
large quantities of smoke. Current
systems are able to eliminate
more than 99% of the ash from
smoke.

Applications of Electrostatics

Experimental results show that
when a charged conductor is
placed in contact with the inside
of a hollow conductor, all the
charge on the charged conductor

Meral dome

is transferred to the hollow +;’T
The high ncg;uj\:(- electric CondUCtor In prInCIpIe’ the +, B -:_
o charge on the hollow conductor Qe &
e and its electric potential can be {=1..
increased  without  limit by }
\ | repetition of the process. 11
Battery :
2 +.%: —- I
+ A : P
| \ |

I "
L= Insulator
Gorored

The charge is deposited
on the belt ar point @& and
mansferred to the holloaw
Dirt out conductor at point &,



Chapter 4 :Capacitance and Dielectrics

Outlines:

v" Definition of capacitance,

v" Calculating capacitance for parallel plate capacitors,
v Combination of capacitors,

v" Energy stored in a charged capacitor,

v" Capacitors with dielectrics,

v RC circuits.



Defi n iti O n Of Capac i tan Ce When the capacitor is charged, the

conductors carry charges of equal
magnitude and opposite sign.

» The capacitance C of a capacitor is defined as the ratio of the magnitude of
the charge on either conductor to the magnitude of the potential difference

between the conductors: |
-~
Q J
¢ AV

> The Sl unit of capacitance is the farad (F): 1F=1C/V @

When the capacitor is connected
to the terminals of a battery,
electrons transfer between the
plates and the wires so that the
plates become charged.

+0

Quick Quiz A capacitor stores charge Q at a potential difference AV.

What happens if the voltage applied to the capacitor by a battery is doubledto 2 AV ?
a) The capacitance falls to half its initial value, and the charge remains the same.

b) The capacitance and the charge both fall to half their initial values.

c) The capacitance and the charge both double.

d) The capacitance remains the same, and the charge doubles.




Calculating Capacitance

There are some shapes of capacitor:
= Parallel plate capacitor ,

= Cylindrical capacitor

= Spherical capacitor.

The capacitance depends on shape of conductor which related to electrical potential.

Spherical capacitor Parallel-Plate Capacitors Cylindrical capacitor

o 4 o

C—Q— Q —E—dl'h‘fa C:Q: 2 C 2 < £
— j— — — 0 f , — f— —
AV kQ/a &k, AV Qd/e,A AV (2k,0/€¢)In (b/a)  2kIn(b/a)
egA
C=—
d

Example(26.1)



‘ Example 26.1 The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge
() 1s coaxial with a cylindrical shell of negligible thick-
ness, radius b > a, and charge —( (Fig. 26.4a). Find the
capacitance of this cylindrical capacitor if its length
is £,

Ganssian
surface

H_Fﬂz - f'd? 8 D]
ol
« i [
d
Vi— Vo= — Erdr=—2k,ﬁjl—
a T

il 4

|
|
I
Fond
oy
-
[a—
=]
o,
B | =
H"-._-""

and use A = Q /€

Q _ Q _ ¢t
AV (2k,Q/€)In(b/a) 2k In(b/a)

i =



Example 26.2 The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge — () concentric with a smaller con-

ducting sphere of radius a and charge O (Fig. 26.5, page 782). Find the capacitance of this device.

i
V,— V, = —j E-d%

’ Y dr 11°
H_Vaz _JErdTZ_kBQI_EZkEQ[_]
[ !r ¥ [
1 1 a— b
(1) ﬂ—ﬂ—hﬂ.(g——a)—ﬁeﬂ s
Q Q ab

TR T k-



> Parallel Combination

EEq:G1+GE+GE+

A picrorial
representation of two
capacitors connected in
parallel to a battery

A circuit diagram
showing the two
capacitors connected
in parallel to a battery

Combinations of Capacitors

A circuit diagram
showing the equivalent
capacitance of the
capacitors in parallel

- e -
L]
+ | — I I €y
|
+0, PP o, o
AV, | 1
= 11
+ . .—___.-- _ I I C‘E Ceq= Cl+ CE
+. PP o, o
AV,
+ J—
[ |
| | +1 = +1 =
AV AV

A pictorial
representation of wo
capacitors connected in
series to a battery

> Series Combination

-Cl G
l'il"rl _.--""_'_J.--"' &1_:_\1 .--"'-.- -

A drcuit diagram
showing the two
capacitors connected
in series to a batery

L'Lf” 'J,f

A drcuit diagram
showing the equivalent
capacitance of the
capacitors in series




Equivalent Capacitance

Find the equivalent capacitance between aand b for the
combination of capacitors shown in Figure 26.9a. All
capacitances are in microfarads.

in parallel

Cog = Gy + Cy = 4.0 uF

C.=Cy+ Cy=80uF

1 1 1 1 1 1
q C1 Cy 40pF  40pF 2.0 uF
Coq = 2.0 uF
111 SET1es,
1 1 1 1 1 1
Cq €1 Cy BOpF BOuF 4.0 puF

Coq = 4.0 uF

’ 1.0™
4.0,/ k
Ir_
i
v 3.0
- :-’-1-.,,_ ..-"r}
i N
| \
1
I ;B0
‘-.Hglq -
C

&q

G, + G,

6.0 uF

=]

&
=

==



Energy stored in a charged capacitor

» The potential energy stored in a charged capacitor has the following forms:

2
Uy = Q _ $Q AV = 3C(AV)?
2C -
» The potential energy stored in a Parallel-Plate Capacitors Sﬁp;mu'nn
oL C El’gE'S
Electrons move represents
A from the plate potential
T — €0 — 9 the wire, energy.
= 3(%27) (80 = bepad)e D o
open, the capacitor plate positively - 0 from the wire to
remains uncharged. charged. L, L the plate.
+ -
» and energy density is: - ‘-
|| |
=
9 E
up = s g E° Electric|| Elecic field
field in between plates Electric
wire field in
That is, the energy density in any electric field is —r@f‘j“;\, ———
’. gy y y . AV | [ _T%E:r:‘b"&b Chemical potential
proportional to the square of the magnitude of the L avi 4 energyin the
electric field at a given point. Regardless of the = | batteryisreduced.

source of the electric field.



Capacitors with dielectrics

» Adielectric is a non-conducting material such as rubber, glass, or waxed paper. We can perform the following
experiment to illustrate the effect of a dielectric in a capacitor.

» Consider an insolated, charged capacitor :
» Notice that the potential difference decreases (k = V,/V)
» Since charge stayed the same (Q=Q,) — capacitance increases

The potential After the dielectric is inserted between
IE,:I IE':I IE,:I difference across the the plates, the charge remains the same,
£ = = = K — charged capacitor is but the potential difference decreases
ﬂ. V illu i"::. .l'l. K ﬂ i"r:. initinlly AV and the capacitance mcreases
0= HED Drieleciric

» Dielectric constant (k) is a material property




» Capacitance is multiplied by a factor k when the dielectric fills the region between the plates completely

» E.qg., for a parallel-plate capacitor

» The capacitance is limited from above by the electric discharge that can occur through the dielectric material
separating the plates.

> In other words, there exists a maximum of the electric field, sometimes called dielectric strength, that can be produced
in the dielectric before it breaks down.

» Therefore, a dielectric provides the following advantages:
» An increase in capacitance
* An increase in maximum operating voltage

* Possible mechanical support between the plates, which allows the plates to be close together without touching, thereby
decreasing d and increasing C



1E R Approximate Dielectric Constants and Dielectric Strengths
of Various Materials at Room Temperature

Material Iheleciric Constant K Dhelectric Strength® (10F V/m)
Air (dry) 10404 59 3
Bakelite 4.9 24
Fused quarntz 5.78 B
Mylar 5.2 7
Neoprene rubber 6.7 12
Nylon 3.4 14
Paper 5.7 16
Paraffin-impregnated paper 3.5 11
Polystyrene 2.56 24
Polyvinyl chloride 3.4 40
Porcelain i 12
Pyrex glass 5.6 14
Silicone oil 2.5 15
Strontium titanate 233 8
Teflon 2.1 60
Vacuum 100 DD —
Water a0 —



RC Circuits

In DC circuits containing capacitors, the current is always in the same direction
but may vary in time. A circuit containing a series combination of a resistor and
a capacitor is called an RC circuit.




v Charging a capacitor At t= 0 switch S is closed,

g(¢) = CE(1 — ¢ /RC) = g(1 — £ VHE)

E ,.
I(t) = ) g A

CE

0.632CE




v Discharging a capacitor .At t= 0 switch S is open,
— — /RO
g(t) = Qe

A .
I(l) = —q — E (Qg_l.f'RC) — _i F—I,: RC

di RC

Where the constant 7 1s the time constant of the RC circuit: 7 = RC

I'1ime constant: 1s the time mterval during which the current decreases to - of 1ts mitial value.



Example 28.9 Charging a Capacitor in an RC Circuit

An uncharged capacitor and a resistor are connected in senes to a battery as shown i Figure 28.16, where £ = 120V,
= 5.00 uF, and R = B.00 x 10 [}. The switch is thrown to position a. Find the time constant of the circuit, the maxi-
mum charge on the capacitor, the maximum current in the circuit, and the charge and current as functions of tme.

= RC= (B.00 > 10F (D500 x 107" F) = 4.00s

0 e = CE = (5.00 gF)(120V) = 60.0 pC

_&__ 120V _
I = B OR00 x LF Q) 150 pA
() glt) = 60.0(1 — ¢ v*m)

(2 i(t) = 150 ¥400

Discharging a Capacitor in an RC Circuit

Consider a capacior of capacitance © that 1s being discharged through a resistor of resistance i as shown in Figure
2B 16¢c.

(A) After how many ume constants is the charge on the capacitor one-fourth s inmial value?

% _ LE i
g - e
L= gt
f
“Ind= ——
RC

= RCIn4 =139RC= 139

When the switch is thrown
Lo position a, the capacitor

begims to charge up.

E:’ }

Ifi
i gn

When the switch is thrown
o position &, the capaciwor

T

i gn




Chapter 5 :Sources of the Magnetic Field

Outlines:

v The Biot-Savart’s law,

v’ the magnetic force between two parallel conductors,
v’ Ampere's law,

v’ the magnetic field of a solenoid,

v' magnetic flux,

v’ Gauss's law in magnetism



The Biot-Savart’s law,

» Oecrsted’s discovery in 1819 that a compass needle is deflected by a current-carrying conductor.
» From the experimental results for Biot and Savart, they arrived at a mathematical expression that gives the

magnetic field at some point in space in terms of the current that produces the field.

dB o< [ 9
dB o ds

1
dBacT—E

g - M Id¥ x i
dB = ir Tesla (T)

» Where u, permeability of free space, uy=4nx10" T.m/ A

The vector dB is perpendicular both to d and to the unit vector #

The diresctom of the Held
is ot of the page= at P

dB,_ ., r P

The directom of the Beld
iz ints the page ot .,



Magnetic Field Surrounding a Thin, 5traight Conductor

Consider a thin, seraight wire of finite length carrving a constant cui-
rent I and placed along the x axis as shown in Figure 30,2, Determine
the magnitude and direction of the magnetic field at point P due oo
this current.

d¥ %t =|dF % ¢k = [d.rm (% - ﬂ)]i = (dxcos 6 Jk

I
T

() dB = (dB)k =

¥

= =
(@ r Ccos #

X= —@gtan &

i an
3 dx= — Yade = —
() @ e cos f
ol 7 aas cos @ Iod
4y dB = — = —— 8 de
@ 4w (cm! ﬁl)( a® ) e dwa Fos
pol [* ol
B= — Jcnsﬂdﬂ=—ﬂnﬁ—sin34
daly thm.{ ! )

¥
Hﬂ:ﬁpr
#
o
Ty &
£
#
&
r
e 7
d¥ 0 —
s D I
3|
¥
r}
ol
£
J_rf iy "ﬁ}'u.'ll
s i
o %
- '"'.
%




Magnetic Field Due to a Curved Wire Segment

Calculate the magnetic field at point O for the current-carrying wire segment
shown in Figure 30.4. The wire consists of two straight portions and a circular arc

of radius a, which subtends an angle 6.

Analyze Fach length element d's along path ACis at the same distance afrom 0, and the current in each contributes a
field element d B directed into the page at (). Furthermore, at every point on AC, ds is perpendicular to #; hence,

ds X | = ds.

wo Id
iadB = — —
4T a®
I I
B ””EJdF s
dma dma
ol pol
B = afl) = —f
411'&2[ ) imra



Example 30.3 Magnetic Field on the Axis of a Circular Current Loop

Consider a circular wire loop of radius a located in the yz
plane and carrying a steady current [ as in Figure 30.5. Cal-

culate the magnetic field at an axial point P a distance x
from the center of the loop.

\P‘,‘
Analyze In this situation, every length element ds is perpendicular to the vector ¥ at the location of the element. e

Therefore, for any element, |ds X #| = (ds)(1) sin 90° = ds. Furthermore, all length elements around the loop are at
the same distance rfrom P, where r* = a® + x°.

_ pol lds x F|  pel  ds

B . = . .
41 r 47 (a* + x*)
ol ds
dB, = 5o Cos
By 47 (a® + x°)
ol | dscos@
B, = ¢dB, = -
* jg o A4q C]E a® + x*
a
cosf = (a® + )2

a g la®

pol ds [ a ] pol a jg pol
B, = . . = e P ds B = - — (2 =
o dq % a® + x* [(a* + x®)V* 4 (a* + x%)** o4y (& + xP)PF (27a) 2(a* + x°)*"*




The Magnetic Force Between Two Parallel Conductors

» Consider two long, straight, parallel wires separated by a distance a and carrying currents lrand Iz in the same

direction.
» \We can determine the force exerted on one wire due to the magnetic field set up by the other wire.

Ua 1,

F,=1,lB, =1,
2ma The field EE due to the current in

The direction of Fj is toward wire 2. wire 2 exerts a magnetic force of
magnitude F; = {{B8; on wire 1.
» If the field set up at wire 2 by wire 1 is calculated, the F, force acting on wire 2 is |‘*\E
found to be equal in e ‘-\|
. . . . . = —— B Ii
magnitude and opposite in directiontoF; . - EEA/I T A
- 5> o - F T
F=I1IxB W
» \We can rewrite this magnitude in terms of the force per unit length:
Fy _ pohl;

> The force between two parallel wires is used to define the ampere as follows: 7 = 5,

When the magnitude of the force per unit length between two long, parallel
wires that carry identical currents and are separated by 1 mis 2 X 1077 N/m,
the current in each wire 1s defined to be 1 A.



Ampere's law

The line integral B.ds of around any closed path equals uyI where 1 is the total steady current passing through any

surface bounded by the closed path

%ﬁ*di’:des =%(Ewr} = 1ol

The Magnetic Field Created by a Long Current-Carrying Wire

A long, straight wire of radius R carries a steady current [ that is uniformly dis-
tributed throngh the cross section of the wire (Fig. 30.13). Calculate the mag-

netic field a distance r from the center of the wire in the regions r = R and
r<< R.

When no current is present in the
wire, all compass needles point in
the same direction {toward the

When the wire carries a sirong
current, the compass needles
deflect in a direction tangent to
the circle, which is the direction
of the magnetic field created by

Earth's north pole). the current.
Y Y * I
| |
|II I |II |
| |
22, <2 ey
& & Bl
I=0 ds
3




Note that the total current passing through the plane of i'; B-d¥ = Bi; ds = B(2mr) = pol
the circle is fand apply Ampére’s law:

_ ol
Solve for B: B= orr (for r= R) (30.14)

Now consider the interior of the wire, where r <~ R. Here the current I' passing through the plane of circle 2 is less
than the total current I

I’ 2
Set the ratio of the current I’ enclosed by circle 2 to the — == 3
entire current f equal to the ratio of the area 7r? enclosed 1 TR
by circle 2 to the cross-sectional area TR? of the wire:
.
Solve for I'": I'= 72
g J"E
Apply Ampére’s law to circle Z: { B-ds = B(27r) = pol' = ﬁﬂ(ﬁ I)
pol
Solve for B: B= s |r  (forr< R) (30.15)
2TR
B
Baor
|
I Be 1/r
|
|
| T
i



The Magnetic Field of a Solenoid

el A solenoid is a long wire wound in the form of a helix. With this
T T configuration, a reasonably uniform magnetic field can be
magnitude of the interior field. produced in the space surrounded by the turns of wire(which we
B shall call the interior of the solenoid) when the solenoid carries a

current. When the turns are closely spaced, each can be /L
o 1T xﬁ,_a‘ approximated as a circular loop, and the net magnetic field is the -l
> vector sum of the fields resulting from all the turns. )]l P
1® b ?E B-d% = BE = p,NI Interior
: 3
® }
.“‘ ® \ - N Figure 30.16 The magnetic field
-?:."_- ®) " Loop2 B= o5 I= ppnl lines for a loosely wound solenoid.
CI RN £

| : Loop 1

|
Ampére'’s law applied to the . .
circular path whose plane is where n =N/ |, is the number of turns per unit length.

perpendicular to the page can be
used to show that there is a weak
field outside the solenoid.



Gauss's law in magnetism

Consider an element of area dA on an arbitrarily shaped surface. If the magnetic field at this element is B, the
magnetic flux through the element isB.dA, where dA is a vector that is perpendicular to the surface and has a

magnitude equal to the area dA. Therefore, the total magnetic flux through the surface is:
i{‘
. a8
'DFEII‘:@K _

—=

Example 30.7 Magnetic Flux Through a Rectangular Loop

h‘

A rectangular loop of width a and length & is located near a long wire carrying a
current I (Fig. 30.21). The distance between the wire and the closest side of the
loop is ¢. The wire is parallel to the long side of the loop. Find the total magnetic
flux through the loop due to the current in the wire.
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Gauss’s Law in Magnetism

The net magnetic flux through any closed surface is always zero:

¥§d5=n

@D The net magnetic flux
/ } through a closed surface

) || 4 swrrounding one of the

T / 3 \ - poles or any other
/ + closed surface is zero.
/

Figure 30.22 The magnetic field lines of a bar mag-
net tform closed loops. (The dashed line represents
the intersection of a closed surface with the page.)

The electric flux
through a closed
surface surrounding

one of the chzrges

15 MOt Zero.

Figure 30.23 The electric field lines surrounding
an electric dipole begin on the positive charge and
terminate on the negative charge.



Comparison:
Electric Field vs. Magnetic Field

Electric Magnetic
Source Charges Moving Charges
Acts on Charges Moving Charges
Force F =Eq F=qvBsin(0)
Direction Parallel E Perpendicular to v,B

Field Lines X

Opposites  |Charges Attract Currents Repel




Chapter 6 :Faraday's law

Outlines:

v’ Faraday's law of induction,

v' motional emf,

v' Lenz's law,

v’ induced emfs and electric fields,

v’ generators and motors



Faraday's law of induction

v Experiments conducted by Faraday in 1831 and by Henry showed that an electric motive
force (emf) can be induced in a circuit by a changing magnetic field.

v The results of these experiments led to a very basic and important law of
electromagnetism known as Faraday’ law of induction.

v emf (and therefore an induced current) can be induced in various processes that involve a

change in a magnetic flux by : Changig Magnetic field or Conductor moving through a
constant magnetic field (called motional emf).



When a magnet is moved
toward a loop of wine

connccled to a sensitve
ammcicr, the ammoter

shows that & currenit ix

induced in the loop.

When the magnet is held
stationary, there & no
induced current in the
loog, even when the

mxgnet is inside the looap.

The current is set up even though no batteries are present in the circuit we call such a current an

When the magnet s
moved away from the

leserpr, the ammeter shows
that the induced current

is opposite that shown in
part [E].

Induced current and say that it is produced by an induced emf.



The experiments shown in Figures ,have one thing in

common: in each case, an emf is induced in a loop when

the magnetic flux through the loop changes with time. In The emf induced in the secondary circuit
general, this emf is directly proportional to the time rate IS 7 2 S a2l
of change of the magnetic flux through the loop. This ‘irough the secondary coll
statement can be written mathematically as Faraday’s

law of induction: When the switch in the (oot
rmary CITCuLL 15 Closed,
primar; losed .
ddb B the ammeter reading in the ’f[
E — secondary circuit changes W
. : L
di momentarily.
— —
D= B -dA
- - - Battery [ron [%
If a coil consists of N loops ,therefore, the total induced emf i A N
in the coil is given by NE

Primary Secondary
coil coil
- fi 'I'-E
1|‘II

dt




E = —%{Bﬂ. cos 1)

From this expression, we see that an emf can be induced in the circuit in several ways:
 The magnitude of B can change with time.

» The area enclosed by the loop can change with time.

* The angle 6 between B and the normal to the loop can change with time.

» Any combination of the above can occur.

AL
/N
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F

Mormal ﬂ; £
to loop ) d fr
\'\f /
Vi —L-:J-:Jp of
/ / / area A
B / K;’
/
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SESEINM  [nducing an emf in a Coil

A coil consists of 200 turns of wire. Each turn 1s a square of side d = 18 cm, and a uniform magnetic field directed

perpendicular to the plane of the coil is turned on. If the field changes linearly from 0 to 0.50 T in 0.80 s, what 1s the
magnitude of the induced emf in the coil while the field 1s changing?

Ady  A(BA) AB ., B — B
€] = N—gF=N—— = NASw = N&' —1
(0.50 T — 0)
— 2 _
€| = (200)(0.18 m) - 40V

What if you were asked to find the magnitude of the induced current in the coil while the field 1s chang-

ing? Can you answer that question/ total resistance of the coil and the circuit is 2Q

4.0
o E] 40V

- =20A
i 2.0 () :




An Exponentially Decaying Magnetic Field

A loop of wire enclosing an area A 1s placed in a
region where the magnetic field is perpendicular
to the plane of the loop. The magnitude of B var-
les In time according to the expression B= B___¢ ™,
where a 15 some constant. That is, at t = 0, the field
1s B__., and for ¢ = 0, the field decreases exponen-
tially (Fig. 31.6). Find the induced emf in the loop as

a function of time.

d _
E=—-——= —Eﬂﬂﬂmue ) = —AB.. —

Figure 31.6 (Example 31.2)
Exponential decrease in the
magnitude of the magnetic

field through a loop with time.

The induced emf and induced
current in a conducting path
attached to the loop vary with
fime in the same way.

By




1- A UHF television loop antenna has a diameter of 11 cm. The magnetic field of a TV signal is normal to
the plane of the loop and, at one instant of time, its magnitude is changing at the rate 0.16 T/s. The
magnetic field is uniform. What emf is induced in the antenna?

2- The magnetic flux through the loop shown in Fig. increases according to the relation Vs = 6.0t 2+ 7.0t,
where Vsis in milliwebers and t is in seconds. (a) What is the magnitude of the emf induced in the loop
when t = 2.0 s? (b) What is the direction of the current through R? e % . ege a

>
!

3- The magnetic field through a single loop of wire, 12 cm in radius and of 8.5 A resistance, changes
with time as shown in the figure. Calculate the emf in the loop as a function of time. Consider the time
intervals (@) t=0tot=2.0s,(b)t=20stot=4.0s,(c)t=4.0stot=6.0s. The (uniform) magnetic field
Is perpendicular to the plane of the loop. 1.0

et 9
oW ¥ 1R 5T
S—

O 2.0 4.0 6.0 S0
L (Ss)



4- A uniform magnetic field is normal to the plane of a circular loop 10 cm in diameter and made of copper
wire (of diameter 2.5 mm). (a) Calculate the resistance of the wire. (see copper resistivity in table 1.68 x10®

Ohm.m) (b) At what rate must the magnetic field change with time if an induced current of 10 A is to appear
in the loop?



Motional emf

» Consider a circuit consisting of a conducting bar of length | sliding along two fixed parallel conducting rails
An emf induced in a conductor moving through a constant magnetic field.

c=—RIl v In steady state, the elecinc and
magnetic forces on an eleciron
> We can find the magnitude of the induced current: in the conductor are balanced.
: b+ —
J o= | € I —-— Bfv T B,
R R */ F
¢ |2 Fy
o E
Where, the power ( energy per time): 2
2 i
p== +
R

Due to the magnetic force on
electrons, the ends of the
conductor become oppositely
charged, which establishes an
elecimic field in the conductor.



Magnetic Force Acting on a Sliding Bar

The conducting bar illustrated in Figure 51.9 (page 942) moves on two frictionless, parallel rails in the presence of a
uniform magnetic field directed into the page. The bar has mass m, and its length 1s €. The bar 1s given an initial veloc-

ity ; to the right and is released at ¢ = 0. Using Newton's laws, find the velocity of the bar as a function of time.

F, = ren = o
. = ma —s» = m—_
du__Esz
df “ X X
F
X X
o X X
R
d B2EZ {9 % X
== I-:ﬂ
X X X X[ m x
I
X g X[ X
In|— i
“( ) mﬁ) r n
4 X X % X
(1) w= we V" . X >|




Lenz's law,

» The induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux
through the area enclosed by the loop.

As the conducting bar slides to the
right, the magnetic flux due to the
external magnetic field into the
page through the area enclosed by
the loop increases in time.

4 -4 & 4 Iﬁi‘ﬂ. 4 4

By Lenz's law, the
induced current x - - . .
must be
counterclockwise o o » o »
o F-l'D-dIJEE a :E § R g R
counteracting r Yt w 1 :-: » v » » »
magnetic field
directed out of - - o :.; » :-: 1-:
the page. =

» » » » » » »




Induced emf and Electric Fields

» We have seen that a changing magnetic flux induces an emf and a current in a conducting
loop. In our study of electricity, we related a current to an electric field that applies
electric forces on charged particles. In the same way, we can relate an induced current in
a conducting loop to an electric field.

. 1D
%E.d_s: LB
di



Electrie Field Induced by a Changing Magnetic Field in a Solenoid

A long solenoid of radius R has n turns of wire per unit length and carries a time-

varying current that varies sinusoidally as I = I, cos wt, where [, 15 the maximum
current and w 1s the angular frequency of the alternating current source (Fig. 31.16).

(A) Determine the magnitude of the induced electric field outside the solenoid ata
distance r > Rfrom its long central axis.

dby  d B . dB
(1) — " ——dt{BwR‘?]——wR -

(2) B= pgnl = ponly,, cos wi

Path of integmtiun
A




(4) jg E-ds = E(2m7)

E(2mr) =
mR*
wotl @ sin wi

P oM [yt B
o sin wi (forr= R)




(B) What 1s the magnitude of the induced electric field inside the solenoid, a distance rfrom its axis?

For an interior point (r < R), the magnetic flux through an integration loop is given by &, = Brr

dd, d db
5 _ _ 2y — _ - S—
(5) 7 = (Bmr®) mrt
dD d
(6) — -:itﬂ = —ﬂrﬂlu,uﬂfm“ E(CDE mﬂ = ﬂfﬂuﬂﬂfm“m sin @i

EQ27r) = Triugnl,,o sin ot

pond @
E= 5 rsin wi (for r < R)




v’ generators and motors

v' Electric generators are devices that take in energy by work and transfer it out by electrical transmission. To understand
how they operate, let us consider the alternating current (AC) generator. In its simplest form, it consists of a loop of

wire rotated by some external means in a magnetic field
An emf is induced in a loop

that rotates in a magnetic field.

v" the magnetic flux through the coil at any time t is

$, = BA cos ) = BA cos wt .
™ [ e
v" The induced emf in the coil is % o |
( y
dd d ~ 5@ et /\ .
. _E . . . circuit
E=—N = —NBA — (cos wt) = NBAw sin wt Brushes U U
dit dt
B
v’ the maximum emf has the value , which occurs when ot = 90 or 270. .
e Normal

O
u
YV

E max = NBAw s

max

Y




