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The Electric Field and
charge distribution

Lectu
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The electric force acting on a positive test charge placed at that
point divided by the test charge.

F — =< N/C







The total electric field in a
point denoted P is equal to
the vector sum of the electric
fields of all the charges.



EXAMPLE 1:

A charge q1=7.0 uC
is located at the
origin, and a second
charge q2=-5.0 uC
is located on the x
axis, 0.30 m from
the origin as shown
in the figure. Find
the electric field at
the point P, which
has coordinates

040 m




Example

Electric Field Due to Two Charges

A charge ¢, = 7.0 uC is located at the origin, and a second
charge g» = — 5.0 uC is located on the x axis, 0.30 m from
the origin (Fig. 23.14). Find the electric field at the point P,
which has coordinates (0, 0.40) m.

0.40 m

9 Y
O——L1
0.30 m
T 92
Figure 1 The total electric field E at P
equals the vector sum E; + Ey, where E, is the field due to the

positive charge g, and Ey is the field due to the negative
charge g».

Solution First, let us find the magnitude of the electric field
at P due to each charge. The fields E; due to the 7.0-uC
charge and Ey due to the —5.0-uC charge are shown in
Figure 23.14. Their magnitudes are

i o o (7.0 X 1075C)

=k = (8.99 ¥ 10" N-m2/C? -

Ey=hke—= 5= 107 N-m~/C5) —— o m)?
= 3.9 % 10° N/C

. g2 0n 9,0, (50X 1075C)
= - = (8.99 x -m2/C2 i

Ey = k,—5- = (8.99 X 10’ N-m%/C?) 050 m)2

1.8 X 10°N/C

The vector E; has only a y component. The vector Es has an

1 \/ s == § 1 \/ \J
x component given by Eg cos # =T FEy and a negative
component given by — Ey sin 6 = —%E(_) . Hence, we can

express the vectors as
E, = 3.9 X 10°j N/C
Es = (1.1 X 10°i — 1.4 X 10%)) N/C
The resultant field E at Pis the superposition of E; and Eu:

E=E, +E = (1.1X10°% + 25 X 10°)) N/C

From this result, we find that E makes an angle ¢ of 66° with
the positive x axis and has a magnitude of 2.7 X 10° N/C.




The system of charges can be
modeled as continuous. Here, the
system of closely spaced charges
is equivalent to a total charge
continuously distributed:

- Along some line
- Over some surface

- Throughout some volume




Discrete
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Continuous F




The uniformly distribution of charges on a line, a surface, or
throughout a volume:

linear charge density ()
a charge Q is uniformly distributed along a line of length | (A=Q/I)

surface charge density (o)

a charge Q is uniformly distributed on a surface of area A

(c=Q/A)

volume charge density (p)

a charge Q is uniformly distributed throughout a volume V

(p=Q/V) :



ELECTRIC
FIELD LINES

Lines that are parallel
to the electric field
vector at any point in
space




The number of lines per unit area through a surface
perpendicular to the lines is proportional to the magnitude of
the electric field in that region.

The field lines are close together where the electric field is
strong and far apart where the field is weak.



ELECTRIC
FIELD
LINES




The lines must begin on a positive charge and terminate on a
negative charge.

In the case of an excess of one type of charge, some lines will
begin or end infinitely far away.

The number of lines drawn leaving a positive charge or
approaching a negative charge is proportional to the
magnitude of the charge.

No two field lines can cross.



ELECTRIC FIELD LINES

(a)




ELECTRIC FIELD
LINES




Electric Flux (@)

The number of electric field lines penetrating some surface

EA

S
&
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N.m?/



| ELECTRIC FLUX

O, =FEA" = FEAcosO



ELECTRIC FLUX

AA,

Surface



| ELECTRIC FLUX




What is the electric flux through a
EXAMPLE | sphere that has a radius of 1.00 m and
carries a charge of +1.00 uC at its
center?
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Example 241 Electric Flux Through a Sphere

What is the electric flux through a sphere that has a
radius of 1,00 m and carries a charge of +1.00 pC at is

center?

Solution The magnitude of the electric field 100 m
from this charge is found using Equation 23,9

100X 1075¢
(100 m)?

f=h =+ (, = (8,99 10°N-m?/CY

=890 X 1°N/C

The feld points radially ouward and is therefore every-
where perpendicular to the surface of the sphere. The flux

through the sphere (whose surface area A= im* =
16 m?) is thus

by = EA = (899 X 10° N/C)(126m)

= LI X 1P N-m/C



Triangle
Area = 2 X b X h
b = base
h = vertical height

Rectangle
Area = w X h
w = width
h = height

Trapezoid (US)
Trapezium (UK)
Area = V2(a+b) X h
h = vertical height

Ellipse
Area = mab

Square
Ia Area = a2
u! a = length of side
Parallelogram
D th Area = b X h
< b = base

h = vertical height

Circle
Area = T X r?
Circumference = 2 X m*r

r = radius
Sector
o Area =2 X r2 x 8
& / r = radius

8 = angle in radians




EXAMPLE 2

Consider a uniform
electric field E oriented in
the x direction. Find the
net electric flux through
the surface of a cube of
edge length |, oriented as
shown in the figure.




Example 24.2 Flux Through a Cube

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edge length €, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of

dA; /@)

T il ¢
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dAy
Figure 24.5 (Example 24.2) A closed surface in the shape of a

cube in a uniform electric field oriented parallel to the x axis.
Side @ is the bottom of the cube, and side @ is opposite side .

the faces (®, @, and the unnumbered ones) is zero because
E is perpendicular to dA on these faces.
The net flux through faces @ and @ is

d),.;=fE-dA+ jE-dA
1 2

For face @, E is constant and directed inward but dA, is
directed outward (# = 180°); thus, the flux through this
face is

jE-dA=jE(cos 180°) dA = —Ej dA = —FEA= —FE€
1 1 1

because the area of each face is A = €2,
For face @, E is constant and outward and in the same
direction as dAy (# = 0°): hence, the flux through this face is

jE-dA= J E(cos 0°) dA = Ef dA = + EA = E€2
2 2 2

Therefore, the net flux over all six faces is

bp=—-FEC+EC+0+0+0+0= 0




A general relationship between the net electric flux
through a closed surface (often called a Gaussian
surface) and the charge enclosed by the surface

Gaussian
A ,// surface

—_—

:+—~[f"d: (DE:CJSE.dA:ECﬁdA:go
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GAUSS'S LAW

The net flux through any
closed surface surrounding
a point charge q is given
by q/¢, and is
independent of the shape
of that surface




The net electric flux through a
closed surface that surrounds no
charge 1s zero

The electric field due to many
charges 1s the vector sum of the
electric fields produced by the
individual charges

D, :qSE-dE:g‘S(El +E,+E +..).dA
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EXAMPLE 3

Starting with Gauss’s law,
calculate the electric field
due to an isolated point
charge q




Example 24.4 The Electric Field Due to a Point Charge

Starting with Gauss’s law, calculate the electric field due to
an isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show
how to solve for the electric field with Gauss’s law. Figure
24.10 and our discussion of the electric field due to a point
charge in Chapter 23 help us to conceptualize the physical
situation. Because the space around the single charge has
spherical symmetry, we categorize this problem as one in
which there is enough symmetry to apply Gauss’s law. To
analyze any Gauss’s law problem, we consider the details of
the electric field and choose a gaussian surface that satisfies
some or all of the conditions that we have listed above. We
choose a spherical gaussian surface of radius r centered on
the point charge, as shown in Figure 24.10. The electric field
due to a positive point charge is directed radially outward by

Caussian

\ S /surface

Figure 24.10 (Example 24.4) The point charge gis at the
center of the spherical gaussian surface, and E is parallel to dA
at every point on the surface.

symmetry and is therefore normal to the surface at every
point. Thus, as in condition (2), E is parallel to dA at each
point. Therefore, E- dA = E dA and Gauss’s law gives

cb,;=3§ E-dA=ngdA=—7—
€)

By symmetry, Eis constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

)gEdA=EﬂgdA=E(4m‘-')=€i
0

where we have used the fact that the surface area of a
. 9 .
sphere is 47r=. Now, we solve for the electric field:

S
4’H'E01'2 ’1'2

To finalize this problem, note that this is the familiar
electric field due to a point charge that we developed from
Coulomb’s law in Chapter 23.

What If? What if the charge in Figure 24.10 were not at the
center of the spherical gaussian surface?

Answer In this case, while Gauss’s law would still be valid,
the situation would not possess enough symmetry to evalu-
ate the electric field. Because the charge is not at the center,
the magnitude of E would vary over the surface of the
sphere and the vector E would not be everywhere perpen-
dicular to the surface.
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EXAMPLE 4

Find the electric field due
to an infinite plane of
positive charge with
uniform surface charge
density G.

Gaussian
surface



Example 24.8 A Plane of Charge

Find the electric field due to an infinite plane of positive
charge with uniform surface charge density o.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of
E is away from positive charges indicates that the direction
of E on one side of the plane must be opposite its direc-
tion on the other side, as shown in Figure 24.15. A gauss-
ian surface that reflects the symmetry is a small cylinder
whose axis is perpendicular to the plane and whose ends

Gaussian
surface

Figure 24.15 (Example 24.8) A cylindrical gaussian surface
penetrating an infinite plane of charge. The flux is £A through
each end of the gaussian surface and zero through its curved
surface.

each have an area A and are equidistant from the plane.
Because E is parallel to the curved surface—and,
therefore, perpendicular to dA everywhere on the
surface—condition (3) is satisfied and there is no contri-
bution to the surface integral from this surface. For the
flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA;
hence, the total flux through the entire gaussian surface is
just that through the ends, &y = 2EA.

Noting that the total charge inside the surface is
gin = oA, we use Gauss’s law and find that the total flux
through the gaussian surface is

A plane of chargev:-2:-1=-2
leading to
= 2;:0 (24.8)

Because the distance from each flat end of the cylinder
to the plane does not appear in Equation 24.8, we conclude
that E = o/2¢ at any distance from the plane. That is, the
field is uniform everywhere.

What If? Suppose we place two infinite planes of charge
parallel to each other, one positively charged and the other
negatively charged. Both planes have the same surface
charge density. What does the electric field look like now?



Abood Habiby
A plane of charge


An electric dipole is defined as a positive charge g and a
negative charge — g separated by a distance 2a. For the dipole
shown in Figure 1 | find the electric field E at Pdue to the
dipole, where Pis a distance y == a from the origin.

33



HOMEWORK

2

Draw the electric field lines for
the following cases:

1- An electron (right side)
separated by 5 cm from a
proton (left side).

2- A proton (right side)
separated by 6 cm from a
proton (left side).

3- An electron (right side) is
separated by 6 cm from an
electron (left side).




A rod of length € has a uniform positive charge per unit
length A and a total charge (). Calculate the electric field at
a point P that is located along the long axis of the rod and a
distance a from one end .

dg=Adx
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