

CHAPTER 1

Units, Physical Quantities, and Vectors

CONTENTS

- **1. Standards and Units**
- 2. Using and Converting Units
- **3. Vectors and Vector Addition**
- 4. Components of Vectors
- 5. Unit Vectors
- 6. Product of Vectors

1. STANDARDS AND UNITS

SI units (International System of units)

Quantity	Unit	Symbol
Length	Meter	m
Mass	Kilogram	Kg
Time	Second	S
Electric current	Ampere	Α
Temperature	Kelvin	K
Amount of substance	Mole	mol
Luminous intensity	Candela	cd

4

<u>Examples:</u>				
$10^{-9}m = 1 nm$				
10^{-6} m = 1 μ m				
$10^{-3}m = 1 mm$				
$10^{-2}m = 1 cm$				
$10^{3}m = 1 \text{ km}$				

Prefixes for Powers of Ten				
Power	Prefix	Abbreviation		
10-15	femto	f		
10-12	pico	р		
10-9	nano	n		
10-6	micro	μ		
10-3	milli	m		
10-2	centi	с		
10-1	deci	d		
10 ³	kilo	k		
106	mega	М		
109	giga	G		
1012	tera	Т		

2. USING AND CONVERTING UNITS

Example 1.1:

1. Express the area of 6.0 cm^2 in m^2

6.0 cm² = (6.0)(10⁻²m)² = 6.0 × 10⁻⁴m²

2. Express the speed of 130 km/h in m/s

$$1 \text{ km} = 10^3 \text{ m and } 1 \text{ h} = 3600 \text{ s}$$
$$130 \frac{\text{km}}{\text{h}} = \left(130 \frac{\text{km}}{\text{h}}\right) \left(\frac{1000 \text{ m}}{\text{km}}\right) \left(\frac{\text{h}}{3600 \text{ s}}\right) = 36.1 \text{ m/s}$$

3. VECTORS AND VECTOR ADDITION

Physical Quantities

Scalar •

- Magnitude
- No direction

Examples:

Length, mass, time, electric current, temperature, area, distance, speed, energy, density, pressure, power → Vector

- Magnitude
- Direction

Examples: Displacement, velocity, force, acceleration, momentum, weight impulse

VECTOR ADDITION

the parallelogram formed by \vec{D} and \vec{E} .

4. COMPONENTS OF VECTORS

A vector,

 $\vec{\mathbf{A}} = (\mathbf{A}_{\mathbf{x}}, \mathbf{A}_{\mathbf{y}})$

The magnitude of a vector,

 $\mathbf{A} = \sqrt{\mathbf{A}_{\mathbf{x}}^2 + \mathbf{A}_{\mathbf{y}}^2}$

The x-component of a vector,

 $A_x = A \cos \theta$

The y-component of a vector,

 $A_y = A \sin \theta$

The direction of a vector

θ	$= \tan^{-1}$	$\left(\left \mathbf{A}_{\mathbf{y}} \right \right)$	
		$\left(\frac{ \mathbf{A}_x }{ \mathbf{A}_x } \right)$	

Quadrant	1 st	2nd	3rd	4th
Component				
A _x	(+)	(-)	(-)	(+)
Ay	(+)	(+)	(-)	(-)
Direction	θ	180 – <i>θ</i>	180 + <i>θ</i>	360 − <i>θ</i>

The components of a vector may be positive or negative numbers.

5. UNIT VECTORS:

Example 1.2:

Find the x- and y- components of the vector \overrightarrow{D} ?

The magnitude of the vector is D = 3.0 m, and the angle $\alpha = 45^{\circ}$.

The direction of the vector \vec{D} in 4th quadrant is:

$$\theta = 360 - \alpha = 360 - 45 = 315^{\circ}$$

Then,

$$D_{\rm x} = D \cos \theta = 3 \cos 315 = +2.1$$

 $D_y = D\sin\theta = 3\sin 315 = -2.1$

Sum and subtraction of two vectors: $\vec{C} = \vec{A} \pm \vec{B} \implies C_x = A_x \pm B_x$ and $C_y = A_y \pm B_y$ **Example 1.3:** $\vec{A} = 2\hat{i} - 2\hat{j}$ and $\vec{B} = 4\hat{i} - 6\hat{j}$. Find: a) $\vec{C} = \vec{A} + \vec{B}$. b) $\vec{D} = \vec{A} - \vec{B}$. c) the magnitudes of \vec{C} and \vec{D} . e) the directions of \vec{C} and \vec{D} . a) $C_x = 2 + 4 = 6$ and $C_y = -2 - 6 = -8 \Longrightarrow \vec{C} = 6\hat{i} - 8\hat{j}$ b) $D_x = 2 - 4 = -2$ and $D_v = -2 + 6 = 4 \Longrightarrow \vec{D} = -2\hat{i} + 4\hat{j}$ c) $C = \sqrt{(6)^2 + (-8)^2} = 10$ and $D = \sqrt{(-2)^2 + (4)^2} = 4.47$ e) $\theta_c = \tan^{-1}\left(\frac{8}{6}\right) = 53^o \Rightarrow \text{direction of } \vec{c} = 360 - 53^o = 307^o$ $\theta_D = \tan^{-1}\left(\frac{4}{2}\right) = 63^o \Rightarrow \text{direction of } \overrightarrow{D} = 180 - 63^o = 117^o$

6. PRODUCTS OF VECTORS

The scalar product of two vectors:

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} \qquad \vec{B} = B_x \hat{\imath} + B_y \hat{\jmath}$$
$$\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = 1 \text{ and } \hat{\imath} \cdot \hat{\jmath} = \hat{\jmath} \cdot \hat{\imath} = 0$$
$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y$$

Example 1.4:

Calculate the scalar product of the two vectors:

$$\vec{A} = 2 \hat{\imath} + 3 \hat{j}$$
 $\vec{B} = 4 \hat{\imath} - 5 \hat{j}$

$$\vec{A} \cdot \vec{B} = 2 \times 4 + 3 \times (-5) = 8 - 15 = -7$$