A building lot has a width of 75.0 ft a length of 125 ft and a height 100 ft .
If a volume depend as
V $=$ width \times length \times height
Express this volume in ($\mathrm{m}^{\wedge} 3$):
A. $2.65 \times 10^{\wedge} 4 \mathrm{~m}^{\wedge} 3$
B. $2.65 \times 10^{\wedge} 5 \mathrm{~m}^{\wedge} 3$
C. $8.70 \times 10^{\wedge} 4 \mathrm{~m}^{\wedge} 3$
D. $8.70 \mathrm{~m}^{\wedge} 3$

The average velocity is given by
$v=x \div t$
" x " Is position measured in mi and " t " is the time measured in second, the dimension of the " v ", is:
A. L
B. L/T
C. TL
D. T / L

The SI base unit for length is:
A. Foot
B. Inch
C. meter
D. Centimetre

The dimension of the Time denoted by :
A. M
B. T
C. X
D. L

The average speed of a moving object during a given interval of time is always:
A. one-half its speed at the end of the interval
B. the magnitude of its average velocity over the interval
C. its acceleration multiplied by the time interval
D. the distance covered during the time interval divided by the time interval

A rectangular building lot has a width of 75.0 ft , and a length of 125 ft . If area defined as $A=$ width * length , express this area in ($\left.m^{\wedge} 2\right) . » 1 f t=0.3048 m<$
A. 2.85 * $10^{\wedge} 3 \mathrm{~m}^{\wedge} 2$
B. 8.70 * $10^{\wedge} 2 \mathrm{~m}^{\wedge} 2$
C. $2.85{ }^{*} 10^{\wedge} 5 \mathrm{~m}^{\wedge} 2$
D. $8.70 \mathrm{~m}^{\wedge} 2$

The SI base unit for mass is ...?
A. Pound
B. Ounce
C. Kilogram
D. Gram

Suppose $A=B^{*} C^{\wedge} 2$. Where A has the dimension L / M and C has the dimension L / T. Then B has the dimension.:
A. $L^{\wedge} 2 / T M$
B. T/M
C. $\mathrm{T}^{\wedge} 2 / \mathrm{ML}$
D. $\mathrm{TM} / \mathrm{L}^{\wedge} 2$

Average velocity defined as:
A. ($\mathrm{Xf}-\mathrm{Xi}$) / ($\mathrm{ti}-\mathrm{tf}$)
B. V / t
C. $(\mathrm{Xf}-\mathrm{Xi}) /(\mathrm{tf}-\mathrm{ti})$
D. ($\mathrm{ti}-\mathrm{tf}$) / ($\mathrm{Xi}-\mathrm{Xf}$)

The acceleration is given by $\mathrm{a}=$ delta $\mathrm{v} /$ delta t , where delta v is velocity measured in mi / h. And delta t is the time measured in second, the dimension of the (a) is :
A. $L^{\wedge} 2 / T$
B. $L / T^{\wedge} 2$
C. L^2
D. $\mathrm{L}^{\wedge} 3$

