

Lecture 4

2.5 The periodic table

- A. Origin of the periodic table
- In 1860, <u>Mendeleev</u> and another scientist produced on of the first periodic tables
- Mendeleev arranged the elements in increasing order of their atomic weight then in order of recurring properties into periods.
- He discovered that elements of the same group are similar in their chemical properties.

Group I Period		П	ш	IV	v	VI	VII	VIII
1	H=1							
2	Li=7	Be=9.4	B=11	C=12	N=14	O=16	F=19	
3	Na=23	Mg=24	Al=27.3	Si=28	P=31	S=32	Cl=35.5	
4	K=39	Ca=40	?=44	Ti=48	V=51	Cr=52	Mn=55	Fe=56,Co=59 Ni=59
5	Cu=63	Zn=65	?=68	?=72	As=75	Se=78	Br=80	<i>\</i>
6	Rb=85	Sr=87	?Yt=88	Zr=90	Nb=94	Mo=96	?=100	Ru=104,Rh=104 Pd=10 <u>6</u>
7	Ag=108	Cd=112	In=113	Sn=118	Sb=122	Te=125	J=12 7	
8	Cs=133	Ba=13 7	?Di=138	?Ce=140		\bigtriangledown		
9		\bigcirc						
10			?Er=178	?La=180	Ta=182	W=184		Os=195,h=197 Pt=198
11	Au=199	Hg=200	Tl=204	Pb=20 7	Bi=208			
12				Th=231		U=240		

B- Classification of Elements

Metalloids ()

- Metalloids have some properties of metals and some properties of nonmetals.
- Some metalloid are shiny like metals but don't conduct electricity.
- Silicon is semiconductor because it does not conduct electricity at certain applied voltage so it silicon is a vital element for silicon valley and electronic industry.
 - Metals (main group) Metals (transition) Metals (inner transition) Metalloids Nonmetals

IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)
5 B 10.91	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00
13 Al 26.98	5i 28.09	15 P 30.97	16 S 32.07	17 CI 35.45
31 Ga 69.72	Ge 72.61	33 As 4.92	34 Se 78.96	35 Br 79.90
49 In 114.8	50 Sn 118.7	5 5 5 21.8	52 Te 127.6	53 126.9

periodic table 2.swf

Alkali Metals

1A

- These are the elements of group 1A, these metals are soft i.e. easily cut by knife and their softness increases as we go down the group.
- They have relatively low melting and low boiling points.
- They react with water forming metal hydroxide MOH and H₂ gas. And the strength of the reaction increases as we go downward. They form stable compound with halogens

2.6 The Electron Configuration 2h n 6 in 1913 discovered Bohr n=5the electrons orbit the = 4n nucleus in definite energy s+p+d+f levels. Each energy level n=3contains a number of **p + d** electrons and each energy level has a certain amount = 2 n of energy (quantized energy). The lowest possible energy level is known as ground n state.

different models of atom.swf

A- Electrons are distributed in Shells, subshels and Orbitals

- Each energy level is divided into a number of sublevels, and each sublevel consists of a number of orbitals.
- The sublevel takes the symbols s, p, d, and f.
- Orbital: "it is a region of space around the nucleus that can hold up to two electrons.

Shell	# of subshells	Letter	Letters specifying subshells			
n = 4	4	S	p	d	f	
<i>n</i> = 3	3	S	р	d		
<i>n</i> = 2	2	S	р			
$n = 1$ $2p_y$ $2p_y$ $2p_x$	Copyright © 2006	S Pearson Prentice Ha	II, Inc.			

C- Electron Configurations of atoms Are Governed by Three Rules

- **Rule 1.** Electrons fill the orbitals in order of increasing orbital energy.
- Rule 2- Each orbital can hold up to two electrons with spins paired.
- **Rule 3.** when there is a set of orbitals of equal energy, each orbital becomes half filled before any of them becomes completely filled.

Q₁ The natural abundance of three stable isotopes of magnesium are 78.99% magnesium-24 (23.99 amu), 10.00% magnesium-25 (24.99), and 11.01% magnesium-26 (25.98). Calculate the atomic weight of magnesium.

 $\Box Q_2$ Write the condensed ground state electron configuration for each of the following elements. The elements atomic number is given in the parentheses.

- He (4) 15 25
- Na (<u>11</u>) 15 25
- CI (17) 5 2 5
 - $P(15) |_{5^2 25^2} z p^6 3 s^2 3 f$

