Chapter 1

Measurement

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-1 Measuring Things, Including Lengths

Learning Objectives

- **1.01** Identify the base quantities in the SI system.
- **1.02** Name the most frequently used prefixes for SI units.
- **1.03** Change units (here for length, area, and volume) by using chain-link conversions.
- **1.04** Explain that the meter is defined in terms of the speed of light in a vacuum.

- Physics and engineering are based on the precise measurement of physical quantities
- Therefore, we need:
 - 1. Rules for measurement and comparison
 - 2. Units for measurement
- A unit:
 - Is the unique name assigned to the measure of a quantity (mass, time, length, pressure, etc.)
 - Corresponds to a standard, a physical quantity with value 1.0 unit (e.g. 1.0 meter = distance traveled by light in a vacuum over a certain fraction of a second)

1-1 Measuring Things, Including Lengths

- There are many different physical quantities, but not all are independent: distance vs. speed (distance/time)
- Base quantities:
 - Are seven fundamental quantities such as length, time
 - Three are needed for mechanics: length, time, mass
 - All have been assigned standards
 - Are used to define all other physical quantities
- Base standards must be:
 - Accessible, so precise measurements can be taken
 - Invariable, so measurements do not change over time

• SI units (the metric system) form the International System of Units

Table 1-1 Units for Three SI Base Quantities

Quantity Unit Name		Unit Symbol	
Length Time	meter second	m s	
Mass	kilogram	kg	

- SI has many derived units, which are written in terms of base units
 - Joules (work-energy): $1 J = 1 kg m^2/s^2$
 - Watts (power): $1 \text{ W} = 1 \text{ J/s} = 1 \text{ kg m}^2/\text{s}^3$

C

m

μ

n

p

10 ⁹
10 ⁶
10 ³

Table 1-2 Pro	efixes for SI Uni	ts
Factor	Prefix ^a	Symbol
1024	votta-	Y
giga-		G
mega-		Μ
kilo-		k
10 ³	kilo-	k
10^{2} 10^{1} 10 -	hecto-	h
10^{-1} 1 0		cent
$\frac{10^{-2}}{10^{-3}}$ 10 ⁻	-3	mill
10-6 10-	-6	mic
10^{-9} 10 10^{-11} 10	-9	nan
10^{-15} 10 ⁻¹⁵ 10 ⁻¹⁶		pico
10^{-21}	Zepto-	
10^{-24}	yocto-	У

© 2014 John Wiley & Sons, Inc. All rights reserved.

 Scientific notation employs powers of 10 to write large or small numbers

 $3\,560\,000\,000 \,\mathrm{m} = 3.56 \times 10^9 \,\mathrm{m}$

 $0.000\ 000\ 492\ s = 4.92 \times 10^{-7}\ s.$

A conversion factor is

- A ratio of units that is equal to 1
- Used to convert between units

$$2\min = (2\min)(1) = (2\min)\left(\frac{60 \text{ s}}{1\min}\right) = 120 \text{ s}.$$

• Units obey the same algebraic rules as variables and numbers

- Needs for accuracy in science have driven changes in the standards for units
- In the past, 1 meter has been defined by:

Today,

- 1. One ten-millionth of the distance from the North pole to the equator
- 2. A platinum-iridium standard meter bar kept in France
- 3. 1 650 763.73 wavelengths of an emission line of Kr-86
 - The meter is the length of the path traveled by light in a vacuum during a time interval of 1/299 792 458 of a second.
- In each transition, the new distance was chosen so that the approximate length of 1 meter was preserved

1-1 Measuring Things, Including Lengths

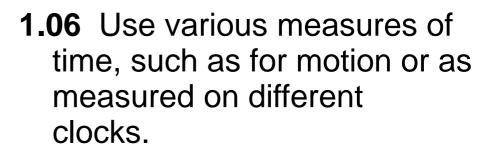
- Significant figures are meaningful digits
- Generally, round to the least number of significant figures of the given data
 - $25 \times 18 \rightarrow 2$ significant figures;
 - Round up for 5+ (13.5 \rightarrow 14, but 13.4 \rightarrow 13)
- Significant figures are not decimal places
 - 0.00356 has 5 decimal places, 3 significant figures
- In general, trailing zeros are not significant
 In other words, 3000 *may* have 4 significant figures
 but usually 3000 will have only 1 significant figure!
 When in doubt, use scientific notation 3.000 x 10³ or 3 x 10³

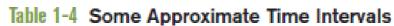
1-1 Measuring Things, Including Lengths

Examples Chain-link conversions:

- 1.3 km x (1000 m)/(1 km) = 1300 m = 1.3 x10³ m
- 0.8 km x (1000 m)/(1 km) x (100 cm)/(1 m) = 80 000 cm = 8 x 10^4 cm
- 2845 mm x (1 m)/(1000 mm)
 x (3.281 ft)/(1 m) = 9.334 ft

Table 1-3 Some Approximate Lengths


Measurement	Length in Meters	
Distance to the first		
galaxies formed	2×10^{26}	
Distance to the		
Andromeda galaxy	2×10^{22}	
Distance to the nearby		
star Proxima Centauri	$4 imes 10^{16}$	
Distance to Pluto	6×10^{12}	
Radius of Earth	$6 imes 10^6$	
Height of Mt. Everest	$9 imes 10^3$	
Thickness of this page	$1 imes 10^{-4}$	
Length of a typical virus	$1 imes 10^{-8}$	
Radius of a hydrogen atom	5×10^{-11}	
Radius of a proton	$1 imes 10^{-15}$	



1-2 Time

Learning Objectives

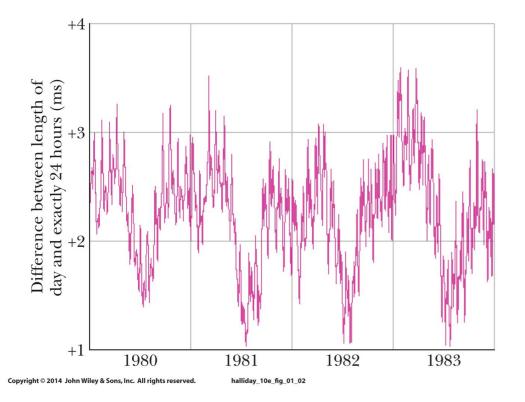
1.05 Change units for time using chain-link conversions.

Measurement	Time Interval in Seconds	T Measurement	ïme Interval in Seconds
Lifetime of the proton (predicted) Age of the universe	3×10^{40} 5×10^{17}	Time between human heartbeats Lifetime of the muon	$8 imes 10^{-1}$ $2 imes 10^{-6}$ $1 imes 10^{-16}$
Age of the pyramid of (Human life expectancy	Theops 1×10^{11}	Shortest lab light pulse Lifetime of the most unstable particle	1×10^{-23}
Length of a day	$9 imes10^4$	The Planck time ^a	$1 imes 10^{-43}$

© 2014 John Wiley & Sons, Inc. All rights reserved.

1-2 Time

- Any standard of time needs to be able to answer:
 - *When* did a thing happen?
 - What was its *duration*?
- Times follow the same conversion process as lengths
- Standards of time in the past have included:
 - 1. Rotation of Earth
 - 2. Quartz vibrations
 - 3. Atomic clocks (cesium), with time signals sent out by radio so others can calibrate their clocks



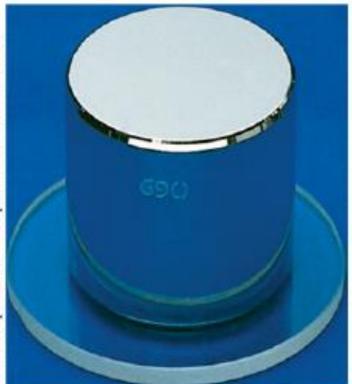
One second is the time taken by 9 192 631 770 oscillations of the light (of a specified wavelength) emitted by a cesium-133 atom.

1-2 Time

 The variation in the length of a day as measured by an atomic clock:

- The vertical scale here amounts to only 3 ms, or 0.003 s.
- This shows the precision of atomic clocks, and the relative imprecision of Earth's rotation (affected by tides, winds)

Figure 1-2



1-3 Mass

Learning Objectives

1.07 Change units for mass using chain-link conversions.

Courtesy Bureau International des Poids et Mesures. Reproduced with permission of the BIPM

1.08 Relate density to mass and volume when the mass is uniformly distributed.

1-3 Mass

- The **standard kilogram** is a cylinder of platinum and iridium stored in France.
- Accurate copies have been sent around the world, other masses can be measured by comparing them against these copies
- The atomic mass unit (u) is a second mass standard
 - 1 atom of Carbon-12 is assigned a mass 12 u
 - Used for measuring masses of atoms and molecules
 - $1 u = 1.660 538 86 \times 10^{-27} \text{ kg} (+/-10 \times 10^{-35} \text{ kg})$
- Masses follow the same conversion process as lengths and times

1-3 Mass

Mass per unit volume is called density

$$ho=rac{m}{V}$$
 Eq. (1-8)

Examples Calculate . . .

- Density of material: $(18 \text{ kg}) / (0.032 \text{ m}^3) = 560 \text{ kg/m}^3$
- Mass of object: $(380 \text{ kg/m}^3) \times (0.0040 \text{ m}^3) = 1.5 \text{ kg}$
- Volume of object: $(250 \text{ kg}) / (1280 \text{ kg/m}^3) = 0.20 \text{ m}^3$

1 Summary

Measurement

- Defined by relationships to base quantities
- Each defined by a standard, and given a unit

Changing Units

- Use chain-link conversions
- Write conversion factors as unity
- Manipulate units as algebraic quantities

SI Units

- International System of Units
- Each base unit has an accessible standard of measurement

Length

 Meter is defined by the distance traveled by light in a vacuum in a specified time interval

1 Summary

Time

- Second is defined in terms of oscillations of light emitted by a cesium-133 source
- Atomic clocks are used as the time standard

Density

Mass/volume

$$\rho = \frac{m}{V} \qquad \text{Eq. (1-8)}$$

Mass

- Kilogram is defined in terms of a platinum-iridium standard mass
- Atomic-scale masses are measured in u, defined as mass of a carbon-12 atom