Chapter 9

Center of Mass and Linear

Momentum
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9-1 Center of Mass

Learning Objectives

9.01 Given the positions of 9.03 For a two-dimensional or
several particles along an three-dimensional extended
axis or a plane, determine object with a uniform
the location of their center of distribution of mass,
mass. determine the center of mass

by (a) mentally dividing the
object into simple geometric
figures, each of which can be
replaced by a particle at its
center and (b) finding the
center of mass of those
particles.

9.02 Locate the center of mass
of an extended, symmetric
object by using the
symmetry.
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9-1 Center of Mass

« The motion of rotating objects can be
complicated (imagine flipping a
baseball bat into the air)

« But there is a special point on the
object for which the motion is simple

/lj :"\\

« The center of mass of the bat traces = .
out a parabola, just as a tossed ball . Y
does A N,

. All other points rotate around this \
point

(b)
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Figure 9-1
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9-1 Center of Mass

‘.‘The center of mass (com) of a system of particles:

"' The center of mass of a system of particles is the point that moves as though
(1) all of the system’s mass were concentrated there and (2) all external forces
were applied there.

« For two particles separated by a distance d, where the
origin is chosen at the position of particle 1:

m,

= d. _
m, + m, Eq. (9-1)

xCOH]

« For two particles, for an arbitrary choice of origin:

mix; + nm,Xx,

Xcom — . Eq. (9-2
com m, + m, qg. (9-2)
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9-1 Center of Mass

« The center of mass is in the same location regardless
of the coordinate system used

. Itis a property of the particles, not the coordinates

com

d

(a)

|

This is the center of mass

of the two-particle system.

Q==
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|

(b)
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— " Shifting the axis

does not change
the relative position
of the com.

Figure 9-2



9-1 Center of Mass

« For many particles, we can generalize the equation,
where M=m,+m,+...+m,_:
nmix; + nmpx, + msgxz + - + m,x,
x —
com M

1 n
M ,gl s Eq. (9-4)

 In three dimensions, we find the center of mass along
each axis separately:
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Sample Problem 9.01 com of three particles

Three particles of masses m, = 1.2 kg, m, = 2.5 kg, and

my = 3.4 kg form an equilateral triangle of edge length
a = 140 cm. Where 1s the center of mass of this system?

This is the position
vector reom for the
com (it points from
the origin to the com).

150

100
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Sample Problem 9.01 com of three particles

Three particles of masses m, = 1.2 kg, m, = 2.5 kg, and

my = 3.4 kg form an equilateral triangle of edge length
a = 140 cm. Where 1s the center of mass of this system?

This is the position
1 i ~omyxy + mpxs + msx; vector Figm for the
Yeom = M = X = M com (it points from
u the origin to the com).
~ (1.2kg)(0) + (2.5 kg)(140 cm) + (3.4 kg)(70 cm)
; 7.1ke
= 83 cm (Answer)
1 3 myy, + mpy, + msy;
and y., =— D> my, = — - my
M = M 50
_ (1.2kg)(0) + (2.5 kg)(0) + (3.4 kg)(120 cm)
7.1kg
= 58 cm. (Answer)
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9-1 Center of Mass

« More concisely, we can write in terms of vectors:

1 &
Feom — M E m;r;, Eq. (9-8)
i=1

« For solid bodies, we take the limit of an infinite sum of
infinitely small particles — integration!

« Coordinate-by-coordinate, we write:

1 1 1
xcom_ﬁf'de, ycom_ﬁjydma Zcom_ﬁ‘[zdma

. Here M is the mass of the object Ea. (9-9)
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9-1 Center of Mass

« We limit ourselves to objects of uniform density, p, for

the sake of simplicity
dm M

= — = — Eq. (9-10)
v T v
« Substituting, we find the center of mass simplifies:

1 1 1
xcom_fodV’ YCom_nydVa Zcom_VJZdV°

Eq. (9-11)

« You can bypass one or more of these integrals if the
object has symmetry
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9-1 Center of Mass

« The center of mass lies at a point of symmetry (if there
IS one)

o It lies on the line or plane of symmetry (if there is one)
It need not be on the object (consider a doughnut)

M Checkpoint 1 y

The figure shows a uniform square plate from which four identical
squares at the corners will be removed. (a) Where is the center of mass of 1 2
the plate originally? Where is it after the removal of (b) square 1;(c)
squares 1 and 2; (d) squares 1 and 3;(e) squares 1,2,and 3; (f) all four 2

squares? Answer in terms of quadrants, axes, or points (without calcula-
tion, of course). 4 3

Answer: (a) at the origin (b) in Q4, along y=-x (c) along the -y axis
(d) at the origin (e) in Q3, along y=x (f) at the origin

© 2014 John Wiley & Sons, Inc. All rights reserved.



WILEY

9-2 Newton's Second Law for a System of Particles

Learning Objectives

9.04 Apply Newton's second
law to a system of particles
by relating the net force (of
the forces acting on the
particles) to the acceleration
of the system’s center of 9.07 Given the mass and

mass. acceleration of the particles in a
system, calculate the
acceleration of the system’s
center of mass.

9.06 Given the mass and velocity
of the particles in a system,
calculate the velocity of the
system’s center of mass.

9.05 Apply the constant-
acceleration equations to the
motion of the individual
particles in a system and to 9.08 Given the position of a
the motion of the system’s system’s center of mass as a
center of mass. function of time, determine the

velocity of the center of mass.
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9.09 Given the velocity of a system’s center of mass as a
function of time, determine the acceleration of the center of
mass.

9.10 Calculate the change in the velocity of a com by
integrating the com’s acceleration function with respect to
time.

9.11 Calculate a com’s displacement by integrating the com’s
velocity function with respect to time.

9.12 When the particles in a two-particle system move without
the system’s com moving, relate the displacements of the
particles and the velocities of the particles.

© 2014 John Wiley & Sons, Inc. All rights reserved.



WILEY

9-2 Newton's Second Law for a System of Particles

« Center of mass motion continues unaffected by forces
internal to a system (collisions between billiard balls)

« Motion of a system's center of mass:

o

F e M Zl)com (system of particles). Eq. (9-14)

Fnet,x — Macom,x Fnet,y — Macom,y Fnet,z — Macorn,Z'

Eq. (9-15)
« Reminders:

1. F,.1s the sum of all external forces

2. M is the total, constant, mass of the closed system
3. a,,,Is the center of mass acceleration
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WILEY

6-2 Newton's Second Law for a System of Particles

Examples Using the center of mass motion equation:

. Billiard collision: forces are only internal, F=0soa=0
. Baseball bat: a = g, so com follows gravitational trajectory

- Exploding rocket: explosion forces are internal, so only the
gravitational force acts on the system, and the com follows a

gravitational trajectory _
The internal forces of the

as long as air resistance can explosion cannot change

. the path of the com.
be ignored for the fragments. 2

Figure 9-5
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WILEY

9-2 Newton's Second Law for a System of Particles

M Checkpoint 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c¢) both skaters pull hand over hand?

Two skaters om fri

Answer: The system consists of Fred, Ethel and the pole. All forces are
internal. Therefore the com will remain in the same place. Since the origin is
the com, they will meet at the origin in all three cases! (Of course the origin
where the com is located is closer to Fred than to Ethel.)
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WILEY

Sample Problem 9.03 Motion of the com of three particles

If the particles 1n a system all move together, the com moves

with them—no trouble there. But what happens when they y
move 1n different directions with different accelerations? = =
Here is an example. a—'—43}k 3 :
The three particles in Fig. 9-7a are initially at rest. Each 178 - of \¥°
experiences an external force due to bodies outside the come 8.0 kg
three-particle system. The directions are indicated, and the 1
magnitudes are F; = 6.0 N, F; = 12 N, and F3 = 14 N. What 55 . 3 &5 & § F
18 the acceleration of the center of mass of the system, and in »
what direction does it move? 4.0 kg
-2-Q ——
The com of the system o 5
will move as if all the - (a)
mass were there and y
the net force acted there. s 7
3 net
M=16kg
*F Q.
l{:tr : com : T
FS
0 X
3 -2 -1 1 2 3 4 5
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WILEY

Sample Problem 9.03 Motion of the com of three particles

If the particles 1n a system all move together, the com moves

with them—no trouble there. But what happens when they y
move in different directions with different accelerations? 7 =
. 1 Q 3 FE
Here 1s an example. "*"_4 0 kg
The three particles in Fig. 9-7a are nitially at rest. Each 2 P
experiences an external force due to bodies outside the | coms 8.0 kg
three-particle system. The directions are indicated, and the .
magnitudes are F; = 6.0 N, F; = 12 N, and F; = 14 N. What 3 o 1 i 2 3 14 5
18 the acceleration of the center of mass of the system, and in -1
irecti ' ? 4,0 k
what direction does it move’ o ks L
The com of the system o f5
. will move as if all the ()
F et Mﬁ’mm mass were there and y
. . the net force acted there. F, 7
Fl + FE F3 M  com - v
M= 16 kg
— — 2 —=
. F,+F,+F PRI Ll
_ 1 2 1 com T
Aeom — M o 3 )
3 -2 -1 1 2 3 4 5
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Fi, + Fy + Fsy,

M
—6.0N + (12N 45° + 14 N
- (12 ) cos = 1.03 m/s>
16 kg
Along the y axis, we have
Fi, + Fy + F5,
'51::.‘-_‘:1114.r = M
+ in 45° +
0N+ 0 _ 530 mrs.
16 kg

From these components, we find that a_,, has the magnitude

ﬂmm — \/(HEUD]..I)E + (HCDHL_}')E

= 1.16 m/s* = 1.2 m/s? (Answer)
and the angle (from the positive direction of the x axis)

a
_ com, ¥
6 = tan! = 27°. (Answer)
HE-‘DI'I'I.I
© 2014 John Wiley & Sons, Inc. All rights reserved.




9-3 Linear Momentum

Learning Objectives
9.13 ldentify that momentumis 9.16 Apply the relationship

a vector quantity and thus between a particle's

has both magnitude and momentum and the (net)
direction and also force acting on the particle.
components. 9.17 Calculate the momentum

9.14 Calculate the (linear) of a system of particles as
momentum of a particle as the product of the system's
the product of the particle's total mass and its center-of-
mass and velocity. mass velocity.

9.15 Calculate the change in 9.18 Apply the relationship
momentum (magnitude and between a system's center-
direction) when a particle of-mass momentum and the
changes its speed and net force acting on the

direction of travel. system.
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9-3 Linear Momentum

o The linear momentum is defined as:

5= my Eq. (9-22)

« The momentum:

- Points in the same direction as the velocity

_— Can only be changed by a net external force

"’ The time rate of change of the momentum of a particle is equal to the net force
acting on the particle and is in the direction of that force.

« We can write Newton's second law thus:

. dp
=
net dt

Eq. (9-23)
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9-3 Linear Momentum

IZ Checkpoint 3

The figure gives the magnitude p of the linear mo- p

mentum versus time ¢ for a particle moving along

an axis. A force directed along the axis acts on the 2

particle. (a) Rank the four regions indicated ac- 1 3

cording to the magnitude of the force, greatest 4 z

first. (b) In which region is the particle slowing?

Answer: (a) 1, 3,2&4 (b) region 3

« We can sum momenta for a system of particles to find:

P = MvV_, (linear momentum,system of particles),

Eq. (9-25)
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9-3 Linear Momentum

AN

"' The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

« Taking the time derivative we can write Newton's
second law for a system of particles as:

.  dP

/2 e W (system of particles),  Ea- (9-27)

« The net external force on a system changes linear
momentum

« Without a net external force, the total linear
momentum of a system of particles cannot change
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9-4 Collision and Impulse

Learning Objectives  9.23 Given force as a function of
time, calculate the impulse (and

thus also the momentum
change) by integrating the
function.

9.19 Identify that impulse is a
vector quantity and thus has
both magnitude and direction

and components.
9.24 Given a graph of force

versus time, calculate the
impulse (and thus also the
momentum change) by
9.21 Apply the relationship graphical integration.
between impulse, average
force, and the time interval
taken by the impulse.

9.20 Apply the relationship
between impulse and
momentum change.

9.25 In a continuous series of
collisions by projectiles,
calculate average force on the

9.22 Apply the constant- target by relating it to the mass
acceleration equations to collision rate and the velocity
relate impulse to force. change of each projectile.

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-4 Collision and Impulse

 In a collision, momentum of a particle can change
« We define the impulse J acting during a collision:
— g
J = f F(¢) dt Eq. (9-30)
t

« This means that the abplied Impulse is equal to the
change in momentum of the object during the collision:

Ap = J  (linear momentum—impulse theorem). Eq. (9-31)

This equation can be rewritten component-by-
component, like other vector equations

© 2014 John Wiley & Sons, Inc. All rights reserved.



The impulse in the collision
is equal to the area under
the curve.

9-4 Collision and Impulse

F(1)

. Given F, . and duration:

<

J = Fu, At Eq.(9-35)

« We are integrating: we only i The average force gives
need to know the area under curve.
the force curve s

Figure 9-9 o {
-
Ch e c kp 0' nt 4 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

A paratrooper whose chute fails to open lands in snow; he 1s hurt slightly. Had he
landed on bare ground, the stopping time would have been 10 times shorter and the
collision lethal. Does the presence of the snow increase, decrease, or leave unchanged
the values of (a) the paratrooper’s change in momentum, (b) the impulse stopping the
paratrooper, and (c) the force stopping the paratrooper? o

|
t; 2
|
[

Answer: (a) unchanged (b)unchanged (c)decreased

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-4 Collision and Impulse

« For a steady stream of n
projectiles, each undergoes —_—
a momentum Change Ap Q000000 Taget —~

Projectiles
V_njr —En_l;
J = —nAp, Eq.(9-35) T ‘

Figure 9-10

[ . : J
The average force is Fag= =" pp= -2 mav. Eq.(9-37)

o If the particles stop:
Ay = vi—v;=0—v=—v, Eq.(9-38)

o If the particles bounce back with equal speed:

Av =v,—v;= —v —v = —2V. Eq.(9-39)

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-4 Collision and Impulse

« The product nm is the total mass for n collisions so we
can write:

Foy = ———Av. Eq.(9-40)

V .
Checkpoint 5

The figure shows an overhead view of a ball bouncing from a vertical wall without any
change in its speed. Consider the change Ap in the ball’s linear momentum. (a) Is Ap,
positive, negative, or zero? (b) Is Ap, positive, negative, or zero? (c) What is the direc-
tion of Ap?

y
9§/
X

Answer: (a) zero (b) positive (c) along the positive y-axis (normal force)
© 2014 John Wiley & Sons, Inc. All rights reserved.




9-5 Conservation of Linear Momentum

Learning Objectives
9.26 For an isolated system of  9.27 Identify that the

particles, apply the conservation of linear
conservation of linear momentum can be done
momenta to relate the initial along an individual axis by
momenta of the particles to using components along that
their momenta at a later axis, provided there is no net
instant. external force component

along that axis.

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-5 Conservation of Linear Momentum

« For an impulse of zero we find:

o

P = constant (closed,isolated system).
« Which says that:

AN

"' If no net external force acts on a system of particles, the total linear momentum P
of the system cannot change.

Eq. (9-42)

o This is called the law of conservation of linear
momentum

« Check the components of the net external force to
know if you should apply this

AN

"' If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-5 Conservation of Linear Momentum

 Internal forces can change momenta of parts of the
system, but cannot change the linear momentum of

the entire system
« Do not confuse momentum and energy

IZI Checkpoint 6

An nitially stationary device lying on a frictionless floor explodes into two pieces, which
then slide across the floor,one of them in the positive x direction. (a) What is the sum of
the momenta of the two pieces after the explosion? (b) Can the second piece move at an
angle to the x axis? (c) What is the direction of the momentum of the second piece?

Answer: (a) zero (b) no (c) the negative x direction

© 2014 John Wiley & Sons, Inc. All rights reserved.



WILEY

9-6 Momentum and Kinetic Energy in Collisions

Learning Objectives

9.28 Distinguish between 9.30 Apply the conservation of
elastic collisions, inelastic momentum for an isolated
collisions, and completely one-dimensional collision to
inelastic collisions. relate the initial momenta of

the objects to their momenta

9.29 Identify a one- after the collision.

dimensional collision as one

where the objects move 9.31 Identify that in an isolated
along a single axis, both system, the momentum and
before and after the collision. velocity of the center of mass

are not changed even if the
objects collide.

© 2014 John Wiley & Sons, Inc. All rights reserved.



WILEY

9-6 Momentum and Kinetic Energy in Collisions

« Types of collisions:
Elastic collisions:

. Total kinetic energy is unchanged (conserved)
- A useful approximation for common situations
- In real collisions, some energy is always transferred

 Inelastic collisions: some energy is transferred

« Completely inelastic collisions:

- The objects stick together
. Greatest loss of kinetic energy

© 2014 John Wiley & Sons, Inc. All rights reserved.



WILEY

9-6 Momentum and Kinetic Energy in Collisions

« For one dimension:

« Inelastic collision
mivy + mMpVy = MV + MyVyr  Eq. (9-51)

« Completely inelastic collision, for target at rest:
Here is the generic setup mlvli — (ml A mz)v Eq. (9-52)

for an inelastic collision. ; ;
In a completely inelastic

Body 1 Body 2 collision, the bodies
Vi, Vo stick together.
Before et el
Q Q X Vi R
my Mo Before =P o Vo; =0 i}
| Hg
Vlf ;)Qf Projectile  Target
After e ] =
Q 22 X After O—[>
my O X .
All rights reserved. ml + m2 Flgure 9-1 5

Figure 9-14

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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WILEY

9-6 Momentum and Kinetic Energy in Collisions

« The center of mass velocity

. . The com of the two
remains unchanged: LEa
them and moves at a
= — — constant velocity.
— /g _ Pii T P ]
Yeom =+ m,  m, +m, [
1 2 1 2 Here is the my >(\_[> mgy
: : 1 \ Here is the
incoming projectile. \ stationary target
Eq. (9-56) — |

« Figure 9-16 shows freeze R
frames of a completely ol ;,@\\'DV;
inelastic collision, showing hebsdmptoieenl | %7
center of mass velocity e

Figure 9-16

© 2014 John Wiley & Sons, Inc. All rights reserved.



WILEY

9-6 Momentum and Kinetic Energy in Collisions

M Checkpoint 7

Body 1 and body 2 are in a completely inelastic one-dimensional collision. What is
their final momentum if their initial momenta are, respectively, (a) 10 kg -m/s and 0;

(b) 10 kg -m/s and 4 kg -m/s; (c) 10 kg -m/s and —4 kg - m/s?

Answer: (a) 10 kgm/s (b) 14 kgm/s (c) 6 kg m/s

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-7 Elastic Collisions in One Dimension

Learning Objectives

9.32 For isolated elastic 9.33 For a projectile hitting a
collisions in one dimension, stationary target, identify the
apply the conservation laws resulting motion for the three
for both the total energy and general cases: equal
the net momentum of the masses, target more massive
colliding bodies to relate the than projectile, projectile
initial values to the values more massive than target.

after the collision.

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-7 Elastic Collisions in One Dimension

‘.‘Total Kinetic energy is conserved in elastic collisions

"' In an elastic collision, the kinetic energy of each colliding body may change, but
the total kinetic energy of the system does not change.

« For a stationary target, conservation laws give:
mvy = mMyVyy -+ M,Vor (linear momentum).  Egq. (9-63)

1 7 1 ) 1 2 ST
S Vi = My Viy -+ UL (kinetic energy). Eq. (9-64)

Here is the generic setup
for an elastic collision with

. a stationary target.
Before Vi,

1 b 4
D l V2i = 0

Q Q X

ml ”LQ

Projectile ~ Target
v V.
After :;f éf
Q Q X
i 2014 John Wiley & Sons, Inc. Al rights reserved. ml ”IQ F i g u re 9 -1 8
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9-7 Elastic Collisions in One Dimension

« With some algebra we get:

m, — m
Vip = — 2y, Eq. (9-67)
/ ny S mn,
2m, Eq. (9-68)
Vo= V1;
2f m, + m, 1i

« Results
» Equal masses: v.,= 0, v,,= v..: the first object stops

» Massive target, m, >> m.: the first object just bounces
back, speed mostly unchanged

» Massive projectile: v, = v, v, = 2v.: the first object keeps
going, the target flies forward at about twice its speed

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-7 Elastic Collisions in One Dimension

« Fora target that is also Here is the generic setup
moving, we get: for an elastic collision with
a moving target.
B, oy S v2i Eq. (9-75 > o
I ny -+ mn, o ny -+ m, = g ( i ) Vii Vo,
2 - Q Q—=
sz - ™ Vii =+ i’ ™ Voi. Eq (9-76) mq moy
Figure 9-19

IZ Checkpoint 8

What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen-
tum of the projectile is 6 kg - m/s and the final linear momentum of the projectile is (a)
2 kg-m/sand (b) —2 kg-m/s? (c) What is the final kinetic energy of the target if the
initial and final kinetic energies of the projectile are, respectively,5 J and 2 J?

Answer: (a)4 kgm/s (b)8kgm/s (c)3J

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-8 Collisions in Two Dimensions

Learning Objectives

9.34 For an isolated systemin  9.35 For an isolated system in

which a two-dimensional which a two-dimensional
collision occurs, apply the elastic collision occurs, (a)
conservation of momentum apply the conservation of
along each axis of a momentum along each axis
coordinate system to relate to relate the momentum

the momentum components components along an axis
along an axis before the before the collision to the
collision to the momentum momentum components
components along the same along the same axis after the
axis after the collision. collision and (b) apply the

conservation of total kinetic
energy to relate the kinetic
energies before and after the
collision.

© 2014 John Wiley & Sons, Inc. All rights reserved.



9-8 Collisions in Two Dimensions

A glancing collision

« Apply the conservation of that conserves T
momentum along each e 7
axis /(

. Apply conservation of = < x
energy for elastic
collisions N

Example For Figure 9-21 for a stationary target:

o Along X My = mMpVvyy COS 01 T myVor COS 02,

. Alongy: (= —myvy,Sin 6 + myv,,sin 6,.
E ] 1 2 1 2 h 1 2
° nergy. Zmlvll- = zmlvlf §m2V2f

© 2014 John Wiley & Sons, Inc. All rights reserved.

Figure 9-21

Eq. (9-79)

Eq. (9-80)

Eq. (9-81)



9-8 Collisions in Two Dimensions

. These 3 equations for a stationary target have 7
unknowns (since v,; = 0) : if we know 4 of them we can
solve for the remaining ones.

IZ Checkpoint 9

In Fig.9-21, suppose that the projectile has an initial momentum of 6 kg - m/s, a final
x component of momentum of 4 kg - m/s, and a final y component of momentum of
—3 kg -m/s. For the target, what then are (a) the final x component of momentum
and (b) the final y component of momentum?

Answer: (a) 2 kg m/s (b) 3 kg m/s

© 2014 John Wiley & Sons, Inc. All rights reserved.



9 Summary

Linear Momentum & Collision and Impulse

' nd
Newton's 2" Law « Defined as:

o Linear momentum defined as: N i,
= J f F(t) dt Eq.(9-30)
i

e
P =MV Eq. (9-25 ’ -
com a-9-23) Impulse causes changes in

« Write Newton's 2" |aw: linear momentum
ﬁnet = Cil_}l‘) Eq. (9'27)
Conservation of Linear Inelastic Collision in 1D
Momentum

« Momentum conserved along

- _ that dimension
P = constant (closed,isolated system).

mivy; =t nyVvy; = lelf -+ mzl/'zf.

Eq. (9-42) Eq. (9-51)

© 2014 John Wiley & Sons, Inc. All rights reserved.



9 Summary

Motion of the Center of Elastic Collisions in One
Mass Dimension
. Unaffected by collisions/internal .« K s also conserved
forces _ my—m,
Sl Eq. (9-67)
2m
V= +1m2 vi.  Eq.(9-68)

Collisions in Two
Dimensions

« Apply conservation of

momentum along each axis
individually

« Conserve K if elastic

© 2014 John Wiley & Sons, Inc. All rights reserved.



