Chapter 12

Equilibrium and Elasticity
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12-1 Equilibrium

Learning ODbjectives

12.01 Distinguish between 12.03 Explain center of gravity
equilibrium and static and how it relates to center
equilibrium. of mass.

12.02 Specify the four 12.04 For a given distribution
conditions for static of particles, calculate the
equilibrium. coordinates of the center of

gravity and the center of
mass.
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12-1 Equilibrium

« We often want objects to be stable despite forces
acting on them

» Consider a book resting on a table, a puck sliding with
constant velocity, a rotating ceiling fan, a rolling
bicycle wheel with constant velocity

« These objects have the characteristics that:

1. The linear momentum of the center of mass Is
constant

2. The angular momentum about the center of mass,
or any other point, is constant

© 2014 John Wiley & Sons, Inc. All rights reserved.



12-1 Equilibrium

« Such objects are in equilibrium

—>

P = aconstant and L = aconstant, Ed-(12-1)

« In this chapter we are largely concerned with objects
that are not moving atall; P=L=0

« These objects are in static equilibrium

« The only one of the examples from the previous page
In static equilibrium is the book at rest on the table
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12-1 Equilibrium

« As discussed in 8-3, if a body returns to static
equilibrium after a slight displacement, it is in stable
static equilibrium

. If a small displacement ends equilibrium, it is unstable

A

« Despite appearances, this rock
IS In stable static equilibrium,
otherwise it would topple at the
slightest gust of wind

......

Figure 12-1 = 5% - N5,
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12-1 Equilibrium

o In part (a) of the figure, we have unstable equilibrium
« A small force to the right results in (b)

« In (c) equilibrium is stable, but push the domino so it
passes the position shown in (a) and it falls

« The block in (d) is even more stable

To tip the block, the center of mass must
pass over the supporting edge.

com
Fg Fg
) |
! |

|

By \
! !
Supporting
edge
(a) () (0 () Figure 12-2
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12-1 Equilibrium

« Requirements for equilibrium are given by Newton's
second law, in linear and rotational form

F... = 0 (balance of forces).  Ed.(12-3)
7= balance of torques). Eq. (12-5)
net q

o Therefore we have for equilibrium:
A

"' 1. The vector sum of all the external forces that act on the body must be zero.

2. The vector sum of all external torques that act on the body, measured about any
possible point, must also be zero.
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12-1 Equilibrium

« We often simplify matters by considering forces only in
the xy plane, giving:

Fretx = 0 (balance of forces), Eq. (12-7)
Pt y 0  (balance of forces), Eq. (12-8)
Thetz — O (balance of torques). Eq. (12-9)

« Note that for static equilibrium we have the additional

requirements that:
AN
"' 3. The linear momentum P of the body must be zero.

4. The angular momentum of the body L must be zero.
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12-1 Equilibrium

IZ Checkpoint 1

The figure gives six overhead views of a uniform rod on which two or more forces act
perpendicularly to the rod. If the magnitudes of the forces are adjusted properly (but kept
nonzero), in which situations can the rod be in static equilibrium?

i i i

(a) (0) (¢)

Answer: (c), (e), (f)
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12-1 Equilibrium

« The gravitational force on a body is the sum of
gravitational forces acting on individual elements
(atoms) of the body

« We can simplify this by saying:
an

"' The gravitational force F)g on a body effectively acts at a single point, called the
center of gravity (cog) of the body.

« Until now we have assumed that the gravitational
force acts at the center of mass

« This Is approximately true for the everyday case:
AN

"' If g is the same for all elements of a body, then the body’s center of gravity (cog)
is coincident with the body’s center of mass (com).
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12-1 Equilibrium

« We can show this by considering a sum of torques on
each element vs. the torque caused by the
gravitational force at the cog ;

Xcog ngi — zxing- "

Fy;

» Substitute mg; for F, Y i
(@) / X *

» Cancel g (= g, for all i)and divide e
by the total mass leaving:

(@)

J

Xcog — EX ;. Eq.(12-16)

o The term on the right is the com \;i"g

Fy

e =\ x
. 0 / ¥cog' \ Line of
FI g ure 12-4 Moment action

arm
()
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12-2 Some Examples of Static Equilibrium

Learning ODbjectives

12.05 Apply the force and 12.06 Identify that a wise choice
torque conditions for static about the placement of the
equilibrium. origin (about which to calculate

torgues) can simplify the
calculations by eliminating one
or more unknown forces from
the torque equation.

© 2014 John Wiley & Sons, Inc. All rights reserved.



12-2 Some Examples of Static Equilibrium

 This section consists of example problems, for forces
In the xy plane

E Checkpoint 2

The figure gives an overhead view of a uniform rod in static equilibrium. (a) Can you
find the magnitudes of unknown forces F,and F, by balancing the forces? (b) If you
wish to find the magnitude of force 1—52 by using a balance of torques equation, where
should you place a rotation axis to eliminate F; from the equation? (c) The magnitude
of Fz turns out to be 65 N. What then is the magnitude of F 17

7AN A

20 N 4d an 2d—t—d—>—d—| K

L]
]

Answer: (a) No (b) place the rotation axis at the location where F1 is applied
to the beam (c)45N
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12-2 Some Examples of Static Equilibrium

Example Balancing a horizontal beam
. M=2.7kg, m=1.8 kg co—

L ‘

Beam
m |

Scale| —

. Setrotationaxisatx=0 JBM
. Sum torques —
o YaMgL+Z2mgL =FL

so F=15N A%

The vertical forces balance
but that is not enough.

e
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|
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I

. Balance vertical forces i

FI — (M + m)g _ Fr Block
=29 N

Beam
s

=
F, gbeam = mg

We must also balance

torques, with a wise
choice of rotation axis.

¥ Lgvtocr = Mg

Figure 12-5 )
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12-2 Some Examples of Static Equilibrium

Example Balancing a leaning beam:
Find the tension in the cable, in the rope

S

and the size of force F by the hinge.
M=430kg, m=85kg,a=19m,b=25m

Set rotationaxisatx =0,y =0

Sum torques (using T, = Mg)
cal.—-bT -%bmg=0

T_=6100 N . _—
Balance forces 7 |z
+ F, =T_=6100 N ! O
F =(m+M)g=5050N | ; ; |
F'=7900 N Flgure12:6 L2 L L.
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12-3 Elasticity

Learning ODbjectives

12.07 Explain what an 12.10 For shearing, apply the
Indeterminate situation is. equation that relates stress
12 08 For tension and to strain and the shear
i modulus.
compression, apply the
equation that relates stress 12.11 For hydraulic stress,
to strain and Young's apply the equation that
modulus. relates fluid pressure to

12.09 Distinguish between strain and the bulk modulus.

yield strength and ultimate
strength.
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12-3 Elasticity

« For problems in the xy plane we have 3 independent
equations

« Therefore we can solve for 3 unknowns

. If we have more unknown forces, we cannot solve for
them and the situation is indeterminate

« This assumes that bodies are rigid and do not deform
(there are no such bodies)

« With some knowledge of elasticity, we can solve more
problems
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12-3 Elasticity

IZ Checkpoint 3

A horizontal uniform bar of weight 10 N is to hang from a ceiling by two wires that
exert upward forces F, and E on the bar. The figure shows four arrangements for the
wires. Which arrangements, if any, are indeterminate (so that we cannot solve for nu-
merical values of E and ﬁz)?

|
I
— — - | —
| 1 |

ilON ilON
(a) (b)
|
R Qg Y30F, £ Fy
| : | | : |
$10N $10N
(¢) (d)

Answer: (d)
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12-3 Elasticity

. All rigid bodies are partially elastic, meaning we can
change their dimensions by applying forces

« A stress, deforming force per unit area, produces a
strain, or unit deformation

« There are 3 main types of stress:
. Iensile (a), Shearing (b), Hydraulic ©
S 1 _}? x/‘l\<;\/

/'\(-lAV

5 ]
\ /
\

/\ T’i\

|
|
|
|
-
ii—__—__——_
|

(@) E (b) (¢)

Figure 12-11
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12-3 Elasticity

Stress and strain are proportional in the elastic range
. Related by the modulus of elasticity:

stress = modulus X strain. Ea.(12-22)

« As stress increases, eventually a yield strength is
reached and the material deforms permanently

. Ultimate Rupiure
. At the ultimate strength, strength
the material breaks

Yield

strength — ; s
iy ange of permanent
§ deformation
7% | Linear (elastic) range

Figure 12-13

0 Strain (AL/L)

Copyright © 20
© 2014 John Wiley & Sons, Inc. All rights reserved.



12-3 Elasticity

 In simple tension/compression, stress is F/A

« The strain is the dimensionless quantity AL/L

« Young's modulus, E, used for tension/compression
F AL

— = F— Eq. (12-23)

A L

« Note that many materials have very different tensile
and compressive strengths, despite the same
modulus being used for both

« E.g., concrete: high compressive strength, very low
tensile strength
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12-3 Elasticity

« Shear modulus, G, used for shearing
L Ax Eq. (12-24)
A L

« Ax s along a different axis than L

. Bulk modulus, B, used for hydraulic compression

AV
p=20B 7 Eq. (12-25)

Relates pressure to volume change
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12-3 Elasticity

« The table shows some elastic properties for common
materials, for comparison purposes

Table 12-1 Some Elastic Properties of Selected Materials of Engineering Interest

Density p
Material (kg/m?)
Steel” 7860
Aluminum 2710
Glass 2190
Concrete* 2320
Wood? 525
Bone 1900
Polystyrene 1050

“Structural steel (ASTM-A36).
“High strength

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Young’s Ultimate Yield
Modulus £ Strength S, Strength S,
(10° N/m?) (10° N/m?) (10° N/m?)

200 400 250
70 110 95
65 50° —
30 40° —
13 50° —
9° 170° —
3 48 _
In compression.
Douglas fir.
Table 12-1
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Sample Problem 12.05

One end of a steel rod of radius R = 9.5 mm and length
L =81 cm is held in a vise. A force of magnitude
F'=62 kN 1s then applied perpendicularly to the end face
(uniformly across the area) at the other end, pulling di-
rectly away from the vise. What are the stress on the rod
and the elongation AL and strain of the rod?

KEY IDEAS

(1) Because the force is perpendicular to the end face and
uniform, the stress is the ratio of the magnitude F of the
force to the area A.The ratio is the left side of Eq. 12-23.
(2) The elongation AL is related to the stress and Young's
modulus E by Eq. 12-23 (F/A = E AL/L). (3) Strain is the
ratio of the elongation to the initial length L.

Calculations: To find the stress, we write

Stress and strain of elongated rod

v F_F _ 62X10N
SESTA T IR T (095 X 10 P m)
= 2.2 X 10° N/m?. (Answer)

The yield strength for structural steel is 2.5 X 10°* N/m?, so
this rod is dangerously close to its yield strength.
We find the value of Young’s modulus for steel in

Table 12-1. Then from Eq. 12-23 we find the elongation:
_ (FIA)L (2.2 X 10° N/m?)(0.81 m)

AL E 2.0 X 10" N/m?
=89 x 107*m = 0.89 mm. (Answer)
For the strain, we have
AL 8.9 X 10 *m
L~ 08lm
=1.1 X 1073 = 0.11%. (Answer)
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WILEY

Sample Problem 12.06 Balancing a wobbly table

A table has three legs that are 1.00 m in length and a fourth

leg that is longer by d = 0.50 mm, so that the table wobbles

slightly. A steel cylinder with mass M = 290 kg 1s placed

on the table (which has a mass much less than M) so that

all four legs are compressed but unbuckled and the table

is level but no longer wobbles. The legs are wooden cylin-

ders with cross-sectional area A = 1.0 cm?; Young’s mod- ' =
ulus is £ = 1.3 X 10" N/m?. What are the magnitudes of the — /
forces on the legs from the floor? ¢

Each of the short u
legs must be compressed by the same amount (call it AL;) e
and thus by the same force of magnitude F;. The single long Z T"l
leg must be compressed by a larger amount AL, and thus by TL i T
a force with a larger magnitude F,. In other words, for a
level tabletop, we must have v

AL, = AL, + d. (12-26)

e Ccom

C
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mation gIves us

F,L. FL

AE  AE

We cannot solve this equation because it has two unknowns,
F,and F;.

To get a second equation containing F, and F;, we can use

a vertical y axis and then write the balance of vertical forces
(-FIIE’[,}' — {]) s

+ d. (12-27)

3F, + F, — Mg =0, (12-28)
e _ Mg dAE
4 4L
(290 kg)(9.8 m/s?)
- 4
(5.0 X 107 m)(10~* m?)(1.3 X 10" N/m?)
N (4)(1.00 m)
=548 N =55 X 10°N. (Answer)

From Eq. 12-28 we then find

F,= Mg — 3F; = (290 kg)(9.8 m/s*) — 3(548 N)
= 1.2 kN. (Answer)
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12  Summary

Static Equilibrium

Fnet = (0  (balance of forces). .
Eq. (12-3)
Toet = 0 (balance of torques).
Eqg. (12-5)
Elastic Moduli
.  Three elastic moduli o

. Strain: fractional length change

. Stress: force per unit area

stress = modulus X strain.
Eq. (12-22)

Center of Gravity

If the gravitational
acceleration is the same for
all elements of the body, the
cog is at the com.

Tension and Compression

E is Young's modulus

F AL
— =E—
A L

Eq. (12-23)
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12  Summary

Shearing Hydraulic Stress
. G Is the shear modulus . B iIs the bulk modulus
AV
i = G ﬂ Eq. (12-24) B = B ——. Eg.(12-25)
A L vV
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