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11-1 Rolling as Translation and Rotation Combined

11.01 Identify that smooth 
rolling can be considered as 
a combination of pure 
translation and pure rotation.

11.02 Apply the relationship 
between the center-of-mass 
speed and the angular speed 
of a body in smooth rolling.

Learning Objectives

Figure 11-2
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11-1 Rolling as Translation and Rotation Combined

⚫ We consider only objects that roll smoothly (no slip)

⚫ The center of mass (com) of the object moves in a 
straight line parallel to the surface

⚫ The object rotates around the com as it moves

⚫ The rotational motion is defined by:

Figure 11-3

Eq. (11-1)

Eq. (11-2)
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11-1 Rolling as Translation and Rotation Combined

⚫ The figure shows how the velocities of translation and 
rotation combine at different points on the wheel

Figure 11-4
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Answer: (a) the same   (b) less than



11-2 Forces and Kinetic Energy of Rolling

11.03 Calculate the kinetic 
energy of a body in smooth 
rolling as the sum of the 
translational kinetic energy of 
the center of mass and the 
rotational kinetic energy around 
the center of mass.

11.04 Apply the relationship 
between the work done on a 
smoothly rolling object and its 
kinetic energy change.

11.05 For smooth rolling (and 
thus no sliding), conserve 
mechanical energy to relate

initial energy values to the 
values at a later point.

11.06 Draw a free-body 
diagram of an accelerating 
body that is smoothly rolling 
on a horizontal surface or up 
or down on a ramp.

Learning Objectives
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11.07 Apply the 
relationship between the 
center-of-mass 
acceleration and the 
angular acceleration.

11.08 For smooth rolling up 
or down a ramp, apply 
the relationship between 
the object’s acceleration, 
its rotational inertia, and 
the angle of the ramp.

11-2 Forces and Kinetic Energy of Rolling
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11-2 Forces and Kinetic Energy of Rolling

⚫ Combine translational and rotational kinetic energy:

⚫ If a wheel accelerates, its angular speed changes

⚫ A force must act to prevent slip

Figure 11-7

Eq. (11-5)

Eq. (11-6)
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11-2 Forces and Kinetic Energy of Rolling

⚫ If slip occurs, then the motion is not smooth rolling!

⚫ For smooth rolling down a ramp:

1. The gravitational force is vertically down

2. The normal force is perpendicular to the ramp

3. The force of friction points up the slope

Figure 11-8
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11-2 Forces and Kinetic Energy of Rolling

⚫ We can use this equation to find the acceleration of 
such a body

⚫ Note that the frictional force produces the rotation

⚫ Without friction, the object will simply slide

Eq. (11-10)

Answer: The maximum height reached by B is less than that reached by A. For 
A, all the kinetic energy becomes potential energy at h. Since the ramp is 
frictionless for B, all of the rotational K stays rotational, and only the 
translational kinetic energy becomes potential energy at its maximum height.
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11-3 The Yo-Yo

11.09 Draw a free-body 
diagram of a yo-yo moving 
up or down its string.

11.10 Identify that a yo-yo is 
effectively an object that rolls 
smoothly up or down a ramp 
with an incline angle of 90°.

11.11 For a yo-yo moving up or 
down its string, apply the 
relationship between the yo-
yo's acceleration and its 
rotational inertia.

11.12 Determine the tension in 
a yo-yo's string as the yo-yo 
moves up or down the string.

Learning Objectives
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11-3 The Yo-Yo

⚫ As a yo-yo moves down a string, it 
loses potential energy mgh but 
gains rotational and translational 
kinetic energy

⚫ To find the linear acceleration of a 
yo-yo accelerating down its string:

1.Rolls down a “ramp” of angle 90°

2.Rolls on an axle instead of its outer 
surface

3.Slowed by tension T rather than friction

Figure 11-9
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11-3 The Yo-Yo

⚫ Replacing the values in 11-10 leads us to:

Eq. (11-13)

Example Calculate the acceleration of the yo-yo

o M = 150 grams, R
0

= 3 mm, I
com

= Mr2/2 =          kg m2

o Therefore a
com

=                         = -0 .4 m/s2
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11-4 Torque Revisited

11.13 Identify that torque is a 
vector quantity.

11.14 Identify that the point 
about which a torque is 
calculated must always be 
specified.

11.15 Calculate the torque due 
to a force on a particle by 
taking the cross product of 
the particle's position vector 
and the force vector, in either 
unit-vector notation or 
magnitude-angle notation.

11.16 Use the right-hand rule 
for cross products to find the 
direction of a torque vector.

Learning Objectives
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11-4 Torque Revisited

⚫ Previously, torque was defined only for a rotating body 
and a fixed axis

⚫ Now we redefine it for an individual particle that moves 
along any path relative to a fixed point

⚫ The path need not be a circle; torque is now a vector

⚫ Direction determined with right-hand-rule

Figure 11-10
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11-4 Torque Revisited

⚫ The general equation for torque is:

⚫ We can also write the magnitude as:

⚫ Or, using the perpendicular component of force or the 
moment arm of F:

Eq. (11-14)

Eq. (11-15)

Eq. (11-16)

Eq. (11-17)
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11-4 Torque Revisited

Answer: (a) along the z direction   (b) along the +y direction  (c) along the +x 
direction
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11-4 Torque Revisited

Example Calculating net torque:

Figure 11-11
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11-5 Angular Momentum

11.17 Identify that angular 
momentum is a vector 
quantity.

11.18 Identify that the fixed 
point about which an angular 
momentum is calculated 
must always be specified.

11.19 Calculate the angular 
momentum of a particle by 
taking the cross product of 
the particle's position vector 
and its momentum vector, in 
either unit-vector notation

or magnitude-angle notation.

11.20 Use the right-hand rule 
for cross products to find the 
direction of an angular 
momentum vector.

Learning Objectives
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11-5 Angular Momentum

⚫ Here we investigate the 
angular counterpart to linear 
momentum

⚫ We write:

⚫ Note that the particle need not 
rotate around O to have 
angular momentum around it

⚫ The unit of angular momentum 
is kg m2/s, or J s

Figure 11-12

Eq. (11-18)
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11-5 Angular Momentum

⚫ To find the direction of angular momentum, use the 
right-hand rule to relate r and v to the result

⚫ To find the magnitude, use the equation for the 
magnitude of a cross product:

⚫ Which can also be written as:

Eq. (11-19)

Eq. (11-20)

Eq. (11-21)

© 2014 John Wiley & Sons, Inc. All rights reserved.



11-5 Angular Momentum

⚫ Angular momentum has meaning only with respect to 
a specified origin

⚫ It is always perpendicular to the plane formed by the 
position and linear momentum vectors

Answer: (a) 1 & 3, 2 & 4, 5   

(b) 2 and 3  (assuming counterclockwise is positive)
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11-6 Newton's Second Law in Angular Form

11.21 Apply Newton's second law in angular form to relate the 
torque acting on a particle to the resulting rate of change of the 
particle's angular momentum, all relative to a specified point.

Learning Objectives

© 2014 John Wiley & Sons, Inc. All rights reserved.



11-6 Newton's Second Law in Angular Form

⚫ We rewrite Newton's second law as:

⚫ The torque and the angular momentum must be 
defined with respect to the same point (usually the 
origin)

⚫ Note the similarity to the linear form:

Eq. (11-23)

Eq. (11-22)
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11-6 Newton's Second Law in Angular Form

Answer: (a) F
3
, F

1
, F

2
& F

4
(b) F

3
(assuming counterclockwise is positive)
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11-7 Angular Momentum of a Rigid Body

11.22 For a system of 
particles, apply Newton's 
second law in angular form to 
relate the net torque acting 
on the system to the rate of 
the resulting change in the 
system's angular momentum.

11.23 Apply the relationship 
between the angular 
momentum of a rigid body 
rotating around a fixed axis 
and the body's rotational 
inertia and angular speed 
around that axis.

11.24 If two rigid bodies rotate 
about the same axis, 
calculate their total angular 
momentum.

Learning Objectives
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11-7 Angular Momentum of a Rigid Body

⚫ We sum the angular momenta of the particles to find 
the angular momentum of a system of particles:

⚫ The rate of change of the net angular momentum is:

⚫ In other words, the net torque is defined by this 
change:

Eq. (11-26)

Eq. (11-28)

Eq. (11-29)

© 2014 John Wiley & Sons, Inc. All rights reserved.



11-7 Angular Momentum of a Rigid Body

⚫ Note that the torque and angular momentum must be 
measured relative to the same origin

⚫ If the center of mass is accelerating, then that origin 
must be the center of mass

⚫ We can find the angular momentum of a rigid body 
through summation:

⚫ The sum is the rotational inertia I of the body

Eq. (11-30)
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11-7 Angular Momentum of a Rigid Body

⚫ Therefore this simplifies to:

Figure 11-15

Table 11-1

Eq. (11-31)

© 2014 John Wiley & Sons, Inc. All rights reserved.



11-7 Angular Momentum of a Rigid Body

Answer: (a) All angular momenta will be the same, because the torque is the 
same in each case   (b)  sphere, disk, hoop
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11-8 Conservation of Angular Momentum

11.25 When no external net torque acts on a system along a 
specified axis, apply the conservation of angular momentum to 
relate the initial angular momentum value along that axis to the 
value at a later instant.

Learning Objectives
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11-8 Conservation of Angular Momentum

⚫ Since we have a new version of Newton's second law, 
we also have a new conservation law:

⚫ The law of conservation of angular momentum
states that, for an isolated system,

(net initial angular momentum) = (net final angular 
momentum)

Eq. (11-33)

Eq. (11-32)
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11-8 Conservation of Angular Momentum

⚫ Since these are vector equations, they are equivalent 
to the three corresponding scalar equations

⚫ This means we can separate axes and write:

⚫ If the distribution of mass changes with no external 
torque, we have:

Eq. (11-34)
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11-8 Conservation of Angular Momentum

Example Angular momentum conservation

⚫ A student spinning on a stool: rotation speeds up when arms 
are brought in, slows down when arms are extended

⚫ A springboard diver: rotational speed is controlled by tucking 
her arms and legs in, which reduces rotational inertia and 
increases rotational speed

⚫ A long jumper: the angular momentum caused by the torque 
during the initial jump can be transferred to the rotation of the 
arms, by windmilling them, keeping the jumper upright

Figure 11-18
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11-8 Conservation of Angular Momentum

Answer: (a) decreases    (b) remains the same   (c) increases
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11-9 Precession of a Gyroscope

11.26 Identify that the 
gravitational force acting on a 
spinning gyroscope causes 
the spin angular momentum 
vector (and thus the 
gyroscope) to rotate about 
the vertical axis in a motion 
called precession.

11.27 Calculate the precession 
rate of a gyroscope.

11.28 Identify that a 
gyroscope's precession rate 
is independent of the 
gyroscope's mass.

Learning Objectives
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11-9 Precession of a Gyroscope

⚫ A nonspinning gyroscope, as 
attached in 11-22 (a), falls

⚫ A spinning gyroscope (b) instead 
rotates around a vertical axis

⚫ This rotation is called precession

Figure 11-22
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11-9 Precession of a Gyroscope

⚫ The angular momentum of a (rapidly spinning) 
gyroscope is:

⚫ The torque can only change the direction of L, not its 
magnitude, because of (11-43)

⚫ The only way its direction can change along the 
direction of the torque without its magnitude changing 
is if it rotates around the central axis

⚫ Therefore it precesses instead of toppling over

Eq. (11-43)

Eq. (11-44)
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11-9 Precession of a Gyroscope

⚫ The precession rate is given by:

⚫ True for a sufficiently rapid spin rate

⚫ Independent of mass, (I is proportional to M) but does 
depend on g

⚫ Valid for a gyroscope at an angle to the horizontal as 
well (a top for instance)

Eq. (11-46)
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Rolling Bodies Torque as a Vector

⚫ Direction given by the right-
hand rule

11   Summary

Eq. (11-2)

Eq. (11-18)

Newton's Second Law in 
Angular Form

Eq. (11-14)

Angular Momentum of a 
Particle

Eq. (11-23)

Eq. (11-5)

Eq. (11-6)
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Angular Momentum of a 
System of Particles

Angular Momentum of a 
Rigid Body

11   Summary

Conservation of Angular 
Momentum

Eq. (11-32)

Eq. (11-33)

Precession of a Gyroscope

Eq. (11-46)

Eq. (11-26)

Eq. (11-29)

Eq. (11-31)
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