Chapter 10

Rotation

WILEY
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10-1 Rotational Varibles

Learning ODbjectives

10.01 Identify that if all parts of a body rotate around a fixed
axis locked together, the body is a rigid body.

10.02 Identify that the angular position of a rotating rigid body
IS the angle that an internal reference line makes with a
fixed, external reference line.

10.03 Apply the relationship between angular displacement
and the initial and final angular positions.

10.04 Apply the relationship between average angular
velocity, angular displacement, and the time interval for that
displacement.

10.05 Apply the relationship between average angular
acceleration, change in angular velocity, and the time
Interval for that change.
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10.06 ldentify that counterclockwise motion is in the positive
direction and clockwise motion is in the negative direction.

10.07 Given angular position as a function of time, calculate the
Instantaneous angular velocity at any particular time and the
average angular velocity between any two particular times.

10.08 Given a graph of angular position versus time, determine
the instantaneous angular velocity at a particular time and the
average angular velocity between any two particular times.

10.09 Identify instantaneous angular speed as the magnitude of
the instantaneous angular velocity.
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10.10 Given angular velocity as a function of time,
calculate the instantaneous angular acceleration at any
particular time and the average angular acceleration
between any two particular times.

10.11 Given a graph of angular velocity versus time,
determine the instantaneous angular acceleration at any
particular time and the average angular acceleration
between any two particular times.

10.12 Calculate a body’s change in angular velocity by
Integrating its angular acceleration function with respect
to time.

10.13 Calculate a body’s change in angular position by
Integrating its angular velocity function with respect to
time.
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10-1 Rotational Variables

« We now look at motion of rotation
. We will find the same laws apply
« But we will need new quantities to express them

Torque

» Rotational inertia

. Arigid body rotates as a unit, locked together
« We look at rotation about a fixed axis
« These requirements exclude from consideration:

» The Sun, where layers of gas rotate separately

» Arolling bowling ball, where rotation and translation occur
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10-1 Rotational Variables

o The fixed axis is called the axis of rotation
« Figs 10-2, 10-3 show a reference line

« The angular position of this line (and of the object) is
taken relative to a fixed direction, the zero angular
pOSItIOﬂ The body has rotated

counterclockwise
Y by angle 6. This is the

> positive direction.
RotaFion\‘ _~Body This referenc.e line is part of the body o
axis and perpendicular to the rotation axis. Q&@- e
We use it to measure the rotation of the ; ke
body relative to a fixed direction. \ 5
A Reference line ”
K\ i,
- X
y 0
‘ Rotation
‘O % axis
Fi gure 10-2 This dot means that

the rotation axis is
out toward you.

Figure 10-3
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10-1 Rotational Variables

« Measure using radians (rad): dimensionless

A)
@ = — (radian measure). Eq. (10-1)
r

2
1rev = 360° = —— = 27rrad, £q. (10-2)
f

« DO not reset 6 to zero after a full rotation

« We know all there is to know about the kinematics of
rotation if we have 6(t) for an object

Define angular displacement as:

A0= 6, — 6. Eq. (10-4)
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10-1 Rotational Variables

« "Clocks are negative’.
A

"' An angular displacement in the counterclockwise direction is positive, and one in
the clockwise direction is negative.

IZ Checkpoint 1

A disk can rotate about its central axis like a merry-go-round. Which of the following
pairs of values for its initial and final angular positions, respectively, give a negative
angular displacement: (a) —3 rad, +5 rad, (b) —3 rad, —7 rad, (c) 7 rad, —3 rad?

Answer: Choices (b) and (c)
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10-1 Rotational Variables

« Average angular velocity: angular displacement

during a time interval
02 T 01 AH

— = ——, Eq.(10-5)
tz = tl At

Wavg

. Instantaneous angular velocity: limit as At — 0
A0 dH

w=llm—= . Eq.(10-6)
At—0 At dt

. If the body is rigid, these equations hold for all points
on the body

« Magnitude of angular velocity = angular speed
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10-1 Rotational Variables

« Figure 10-4 shows the values for a calculation of
average angular velocity

3 Reference line

This change in the angle of the reference line
(which is part of the body) is equal to the angular
displacement of the body itself during this

A9 _Facy  time interval.

At ty

b, \b

) Figure 10-4

i Rotation axis

hn Wi

« Average angular acceleration: angular velocity
change during a time interval

Wy — Wy Aw

Ao = = —t
e t; — ty At

Eq. (10-7)
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10-1 Rotational Variables

. Instantaneous angular velocity: limit as At — 0

— l & — ﬂ Eq. (10-8)
T s At dr
. If the body is rigid, these equations hold for all points

on the body

« With right-hand rule to determine direction, angular
velocity & acceleration can be written as vectors

. If the body rotates around the vector, then the vector
points along the axis of rotation

« Angular displacements are not vectors, because the
order of rotation matters for rotations around different
axes
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z The order of the
‘ rotations makes

a big difference
in the result.
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WILEY

10-2 Rotation with Constant Angular Acceleration

Learning ODbjectives

10.14 For constant angular acceleration, apply the relationships
between angular position, angular displacement, angular
velocity, angular acceleration, and elapsed time (Table 10-1).
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WILEY

10-2 Rotation with Constant Angular Acceleration

« The same equations hold as for constant linear
acceleration, see Table 10-1

« We simply change linear quantities to angular ones

« Egs. 10-12 and 10-13 are the basic equations: all
others can be derived from them

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Missing Angular Equation

Number Equation Variable Equation Number
(2-11) v =y, + at X —Xb 60— 6 w= w,+ at (10-12)
(2-15) X —Xq =Wt ¥ %at2 % 1) 0— 6, = wyt + %at2 (10-13)
(2-16) v2 = vj + 2a(x — xp) t t o = of + 2a(6 — 6,) (10-14)
(2-17) x — xg = 3(vo + V)t a @ 0— 6 = 3(wy + o)t (10-15)
(2-18) X —Xyg=Vt— %at2 Vo N 60— 6, = wt — %at2 (10-16)
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Table 10-1
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WILEY

10-2 Rotation with Constant Angular Acceleration

M Checkpoint 2

In four situations, a rotating body has angular position 6(t) given by (a) 6 = 3t — 4,
(b) = =562 + 4t> + 6,(c) 6§ = 2/t>* — 4/t,and (d) @ = 5t* — 3.To which situations do
the angular equations of Table 10-1 apply?

Answer: Situations (a) and (d); the others do not have constant angular
acceleration
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WILEY

10-3 Relating the Linear and Angular Variables

Learning Objectives
10.15 For arigid body rotating  10.16 Distinguish between

about a fixed axis, relate the tangential acceleration and
angular variables of the body radial acceleration, and draw
(angular position, angular a vector for each in a sketch
velocity, and angular of a particle on a body
acceleration) and the linear rotating about an axis, for
variables of a particle on the both an increase in angular
body (position, velocity, and speed and a decrease.

acceleration) at any given
radius.
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WILEY

10-3 Relating the Linear and Angular Variables

« Linear and angular variables are related by r,
perpendicular distance from the rotational axis

« Position (note 6 must be In radians):
s = Or Eq. (10-17)

« Speed (note w must be in radian measure):

vV = wr Eq. (10-18)

« We can express the period in radian measure:
27T

T = Eq. (10-20)
W
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WILEY

10-3 Relating the Linear and Angular Variables

« Tangential acceleration S
. y circle around the
(rad | an S) ' Cirelé ' - rotation axis.

a. = ar Eq. (10-22)

. We can write the radial
acceleration in terms of S
angular velocity (radians): i e

y  component and may have
a tangential component.

>
v >
a, = = = W°F Eq.(10-23)

Figure 10-9 ©
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WILEY

10-3 Relating the Linear and Angular Variables

M Checkpoint 3

A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this
system (merry-go-round + cockroach) is constant, does the cockroach have (a) radial
acceleration and (b) tangential acceleration? If wis decreasing, does the cockroach
have (c) radial acceleration and (d) tangential acceleration?

Answer: (a) yes (b)no (c)yes (d)yes
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10-4 Kinetic Energy of Rotation

Learning ODbjectives

10.17 Find the rotational inertia 10.19 Calculate the rotational
of a particle about a point. Kinetic energy of a body in

. . terms of its rotational inertia
10_.18 _Flnd the total r(_)tatlonal and its angular speed.
Inertia of many particles
moving around the same
fixed axis.
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10-4 Kinetic Energy of Rotation

« Apply the kinetic energy formula for a point particle
and sum over all the particles K = 2 2myv;?

« Different linear velocities (same angular velocity for all
particles but possibly different radii )

« Then write velocity in terms of anaular velocity:

K= %mi(a)r,-)z = % (2 m,-r,z>wz, Eq. (10-32)

We call the quantity in parentheses on the right side
the rotational inertia, or moment of inertia, |

« This Is a constant for a rigid object and given rotational
axis

» Caution: the axis for | must always be specified
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10-4 Kinetic Energy of Rotation

« We can write:

= m:r 2 rotational inertia Eq. (10-33)
L

« And rewrite the kinetic energy as:

1 ;
K = 51 w* (radian measure) Eq. (10-34)

» Use these equations for a finite set of rotating particles

« Rotational inertia corresponds to how difficult it is to
change the state of rotation (speed up, slow down or
change the axis of rotation)
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10-4 Kinetic Energy of Rotation

Rod is easy to rotate
this way.

}{otation /C

axis

Figure 10-11

IZ Checkpoint 4

(0)

Harder this way.

1 m
The figure shows three small spheres that rotate . — @ 36kg
about a vertical axis. The perpendicular distance aR;Zauon LM o0 kg
between the axis and the center of each sphere is N 3 m
given. Rank the three spheres according to their 4 I(g

rotational inertia about that axis, greatest first.

Answer: They are all equal!
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10-5 Calculating the Rotational Inertia

Learning ODbjectives

10.20 Determine the rotational 10.22 Apply the parallel-axis
Inertia of a body if it is given theorem for a rotation axis
In Table 10-2. that is displaced from a

. parallel axis through the
10_.21 .Calculate the.rotatlor)al center of mass of a body.
Inertia of body by integration

over the mass elements of
the body.
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10-5 Calculating the Rotational Inertia

« Integrating Eq. 10-33 over a continuous body:

I = f r2dm (rotational inertia, continuous body).  Ed-: (10-35)

o In principle we can always use this equation

« But there is a set of common shapes for which values
have already been calculated (Table 10-2) for common

axesS
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10-5 Calculating the Rotational Inertia

Tahle 10-2 Some Rotational Inertias

Hoop about

central axis

(a)

I= MR?

Axis
Solid cylinder

(or disk) about

\ central diameter

e

Il{ \‘/Il

I=MR? + 5 ML? (d)
Axis
_ Thin
spherical shell
about any
9R diameter

I= $M(R3? + R3)

Axis

I= $MR?

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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-
Annular cylinder

(or ring) about
central axis

@) I= $MR?
Axis
Thin rod about -
axis through center
perpendicular to
length 9R

(@) I= 2MR?
Axis
Hoop about any
diameter
e— a N}A/
(h)

I=5M(a? + b?)

o

b

Solid cylinder
(or disk) about

/& central axis

(¢)

Solid sphere
about any
diameter

N

Slab about
perpendicular
axis through
center

(7)

Table 10-2



10-5 Calculating the Rotational Inertia

o If we know the moment of inertia for the center of
mass axis, we can find the moment of inertia for a
parallel axis with the parallel-axis theorem:

We need to relate the rotational inertia
around the axis at P to that around the

I — Icom =+ Mh2 Eq. (10-36) axis at the com.

)

dm
« Note the axes must be -
parallel, and the first must Rowtionaxis /" |,
o)
go through the center of B
mass R
. O ¥
« This does not relate the e
moment of inertia for two comter of mass
arbitrary axes Figure 10-12

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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10-5 Calculating the Rotational Inertia

IZI Checkpoint 5

The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the object. ml
Rank the choices according to the rotational inertia
of the object about the axis, greatest first.

(1) (2) (3) (4)

Answer: (1), (2), (4), (3)
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Figure 10-13a shows a rigid body consisting of two particles of
mass m connected by a rod of length L. and negligible mass.

(a) What is the rotational inertia /_,,, about an axis through the
center of mass, perpendicular to the rod as shown?

Calculations: For the two particles, each at perpendicular
distance %L from the rotation axis, we have

[ =2 myr; = (m)(%L)z + (m){%L)g

= >ml> (Answer)

(b) What is the rotational inertia [ of the body about an axis

through the left end of the rod and parallel to the first axis
(Fig. 10-13h)?

This situation is simple enough that we can find / using
either of two techniques. The first is similar to the one used
in part (a). The other, more powerful one is to apply the
parallel-axis theorem.

First technique: We calculate [ as in part (a), except here
the perpendicular distance r; 1s zero for the particle on the
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10-5 Calculating the Rotational Inertial

Example Calculate the moment of inertia for Fig. 10-13 (b)

- Summing by particle:

I = m(0) + mL> = mL”’.

| ——Rotation axis
through

- Use the parallel-axis theorem center of mass

com

m .
O—F"""-0@
— ]

_ 2 = 1,72 17y2
I= Loy + MR =imL? + 2m)(3L) ) -
Here the rotation axis is through the com.

— 2
- mL . | — Rotation axis through
end of rod
m
Am com Qo
: |

) Here it has been shifted from the com

without changing the orientation. We
can use the parallel-axis theorem.

nnnnnn Wi

Figure 10-13
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10-6 Torque

Learning Objectives | |
10.25 Identify that a rotation

10.23 Identify that a torque on axis must always be
a body involves a force and a specified to calculate a
position vector, which torque.

extends from a rotation axis

to the point where the force 10.26 Identify that a torque is

assigned a positive or

IS applied. _ . .
negative sign depending on
10.24 Calculate the torque by the direction it tends to make
using (a) the angle between the body rotate about a
the position vector and the specified rotation axis:
force vector, (b) the line of “clocks are negative.”

action and the moment arm
of the force, and (c) the force ~ 10-27 When more than one

component perpendicular to torque_acts on a body about
the position vector. a rotation axis, calculate the

net torque.
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10-6 Torque

« The force necessary to rotate an
object depends on the angle of the
force and where it Is applied

« We can resolve the force into
components to see how It affects sl
rOtatl O n causescll'otation around this axis

(which extends out toward you).

(c)

Mome

of F (&)

You calculate the same torque by But actually only the tangential
using this moment arm distance component of the force causes
and the full force magnitude. the rotation.

Figure 10-16

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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10-6 Torque

« Torque takes these factors into account:
7= (r)(Fsin ¢).  Eq.(10-39)
« Aline extended through the applied force is called the
line of action of the force

« The perpendicular distance from the line of action to
the axis is called the moment arm

« The unit of torque Is the newton-meter, N m

« Note that 1 J =1 N m, but torques are never
expressed In joules, torgue Is not energy
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10-6 Torque

« Again, torgue is positive if it would cause a
counterclockwise rotation, otherwise negative

« For several torques, the net torque or resultant
torgque is the sum of individual torques

. Pivot point
Z Checkpoint 6 i e 100
The figure shows an overhead view of a meter stick that can pivot about the dot at the position n) '
marked 20 (for 20 cm). All five forces on the stick are horizontal and have the same magnitude. \] .
Rank the forces according to the magnitude of the torque they produce, greatest first. % F; - £y
1 3

Answer: F, & F,, F,, F, & F¢
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10-7 Newton's Second Law for Rotation

Learning ODbjectives

10.28 Apply Newton's second law for rotation to relate the net
torgue on a body to the body's rotational inertia and rotational
acceleration, all calculated relative to a specified rotation axis.
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10-7 Newton's Second Law for Rotation

 Rewrite F = ma with rotational variables:

Thet — la Eq. (10-42)
. The torque due to the tangential
i It 1S to rque th at component of the force causes
causes angular an angular acceleration around
. the rotation axis.
acceleration

Rotation axis

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved. Fi g u re 10- 17
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10-7 Newton's Second Law for Rotation

M Checkpoint 7

The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is
to the left of the stick’s midpoint. Two horizontal forces, F, and F,are applied to the stick. Only Fis

shown. Force F is perpendicular to the stick and is applied at the right end. If the stick is not to turn,

(a) what should be the direction of F,and (b) should F, be greater than, less than, or equal to F,?

Answer: (a) F, should point downward, and

(b) should have a smaller magnitude than F,

© 2014 John Wiley & Sons, Inc. All rights reserved.
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10-8 Work and Rotational Kinetic Energy

Learning ODbjectives

10.29 Calculate the work done
by a torque acting on a
rotating body by integrating
the torque with respect to the
angle of rotation.

10.30 Apply the work-kinetic
energy theorem to relate the
work done by a torque to the
resulting change in the
rotational kinetic energy of
the body.

10.31 Calculate the work done
by a constant torque by
relating the work to the angle
through which the body
rotates.

10.32 Calculate the power of a
torque by finding the rate at
which work is done.

10.33 Calculate the power of a
torque at any given instant by
relating it to the torque and
the angular velocity at that
Instant.
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10-8 Work and Rotational Kinetic Energy

« The rotational work-kinetic energy theorem states:
AK = K; — K; =517 — 5l0? = W Eq. (10-52)

« The work done in a rotation about a fixed axis can be
calculated by:

O

W = f 7d@  Eq.(10-53)
0;

« Which, for a constant torgue, reduces to:

W= 17(6,— 6)  Ea(os4
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10-8 Work and Rotational Kinetic Energy

« We can relate work to power with the equation:

dW
P=7=Tw

Eq. (10-55)

» Table 10-3 shows corresponding quantities for linear
and rotational motion:

Table 10-3 Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)

Position

Velocity
Acceleration

Mass

Newton’s second law
Work

Kinetic energy

Power (constant force)

X
v = dx/dt
a = dv/dt
m

Fnet = ma
W = [ Fdx
K = 3mv?
P = Fv

Work —kinetic energy theorem W = AK

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
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Pure Rotation (Fixed Axis)

Angular position 0

Angular velocity w = do/dt
Angular acceleration a = doldt
Rotational inertia Il
Newton’s second law Toet = I
Work W=/[7d6
Kinetic energy K =3lo?
Power (constant torque) P=rw

Work —kinetic energy theorem W = AK

Tab. 10-3



10  Summary

Angular Position Angular Displacement
« Measured around a rotation « A change in angular position
axis, relative to a reference
line: p A= 6, — 0. Eq.(10-4)
= — Eqg. (10-1)
r
Angular Velocity and Angular Acceleration
Speed « Average and instantaneous
» Average and instantaneous values:
values: w, — 0,  Aw
Wyyo — 02 — 91 — ﬂ, Eq (10'5) aavg B tz - tl B At ’ Eq (10-7)
5 -4 At
A do =t i = 40
w = lim = —. Eq. (10-6) A—0 At dr = EQq.(10-8)

At—0 At dt
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10  Summary

Kinematic Equations Linear and Angular
« Given in Table 10-1 for constant Variables Related
acceleration « Linear and angular

displacement, velocity, and

« Match the linear case _
acceleration are related by r

Rotational Kinetic Energy ~ The Parallel-Axis Theorem

and Rotational Inertia » Relate moment of inertia around
K = %Ia)z (radian measure) any par_aIIeI axis to value around
com axis
Eq. (10-34)
I = 2 m,-r,z (rotational inertia) I=1 com + Mh2 Eq. (10-36)

Eq. (10-33)

© 2014 John Wiley & Sons, Inc. All rights reserved.



10  Summary

Torque Newton's Second Law In
* Force applied at distance from Angmar Form
an axis:
7= (r)(F'sin ¢). Eq.(10-39) Thet = [ Ea.1042)

« Moment arm: perpendicular
distance to the rotation axis

Work and Rotational
Kinetic Energy

0
W = J f Td0 Eq. (10-53)
0;
dw

P=—=17w Eq. (10-55)
dt
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