STEREOCHEMISTRY

INTRODUCTION

Stereochemistry is the branch of chemistry concerned with the three dimensional structures of molecules.

CHIRALITY or HANDEDNESS:

Stereoisomers have the same atomic connectivity but differ in the spatial arrangement of the constituent atoms.

- ? (Handedness is important in organic and biochemistry).
- Molecular handedness makes possible specific interactions between enzymes and substrates—effecting metabolism and pharmaceuticals.

Review Of Isomerism

Stereoisomerism

- Same connections, different spatial arrangement of atoms.
- Enantiomers (nonsuperimposable mirror images).
- Diastereomers (all other stereoisomers).
- Includes cis, trans and configurational.

Enantiomers

(nonsuperimposable mirror-image stereoisomers)

Diastereomers

(nonsuperimposable, non-mirror-image stereoisomers)

Configurational diastereomers

Cis-trans diastereomers (substituents on same

side or opposite side of double bond or ring)

(R)-Lactic acid

2R,3R-2-Amino-3hydroxybutanoic acid

and

and

trans-2-Butene

trans-1,3-Dimethylcyclopentane

(S)-Lactic acid

cis-2-Butene

cis-1,3-Dimethylcyclopentane

Enantiomers and Tetrahedral Carbon

Should have defferen at or

The tetrahedral carbon must be a chiral carbon.

CHIRAL CENTERS

- ? A point in a molecule where four different groups (or atoms) are attached to carbon is called a chiral center.
- ? There are two nonsuperimposable ways that 4 different groups (or atoms) can be attached to one carbon atom.
- If two groups are the same, then there is only one way.
- A chiral molecule usually has at least one chiral center.

Plane of Symmatry

No Plane of Summatry

CHIRALITY

If an object has a plane of symmetry it's the same as its mirror image.

A plane of symmetry divides an entire molecule into two pieces that are exact mirror images.

Achiral means that the object has a plane of symmetry.

Molecules that are not superimposable with their mirror images are chiral (have handedness).

Hands, gloves are prime examples of chiral object.

They have a "left" and a "right" version.

Organic molecules can be Chiral or Achiral.

CHIRAL CENTERS

- ? A point in a molecule where four different groups (or atoms) are attached to carbon is called a chiral center.
- ? There are two nonsuperimposable ways that 4 different groups (or atoms) can be attached to one carbon atom.
- If two groups are the same, then there is only one way.
- A chiral molecule usually has at least one chiral center.

Chiral Centers in Chiral Molecules

- ? Groups are considered "different" if there is any structural variation (if the groups could not be superimposed if detached, they are different).
- In cyclic molecules, we compare by following in each direction in a ring.

Which of the following molecules are Chiral?

- a. 3-Bromopentane.
- b. 3-Methylhex-1-ene.
- c. Cis-1,4-Dimethylcyclohexane.

Enantiomerism

- Molecules exist as three-dimensional objects.
- Molecules that are different than their mirror image.
- ? These are stereoisomers called enantiomers.
- Molecules that have one carbon with 4 different substituents have a non-superimposable mirror image.
- Enantiomers = non-superimposable mirror image stereoisomers.

Chirality in Nature and Chiral Drugs

The different enantiomers of a chiral molecule have same physical properties, they almost have different biological properties.

Eg:1 (+)-Limonene has the odor of citrus fruits and (-)-Limonene has the odor of pine trees.

Chiral Drugs:

The S-enantiomer of Ibuprofen is an active analgesic and antipyretic, whereas the R-enantiomer of Ibuprofen in inactive.

Enantiomerism

A molecule that is not identical to its mirror image is a kind of stereoisomer called as an enantiomer.

Example: Lactic acid

The "right handed" lactic acid can't be superimposed on top of a molecule of "left-handed" lactic acid.

Tetrahedral stereogenic centers

The carbon atom bonded to four different groups is called a tetrahedral stereogenic center asymmetric center, or chirality center OR stereocenter.

(+)-Carvone is responsible for the odor of caraway seed oil.

Thalidomide: Drug

Optical Activity

- 2 Light restricted to pass through a plane is plane-polarized.
- Plane-polarized light that passes through solutions of achiral compounds remains in that plane.
- Solutions of chiral compounds rotate plane-polarized light and the molecules are said to be optically active.
- Light passes through a plane polarizer.
- Plane polarized light is rotated in solutions of optically active compounds.
- Measured with polarimeter.
- Rotation, in degrees, is [?].
- Clockwise rotation is called dextrorotatory.
- Anti-clockwise is levorotatory.

Measurement of Optical Rotation

- The source passes through a polarizer and then is detected at a second polarizer.
- The angle between the entrance and exit planes is the optical rotation.

Optical Activity

- Rotation, in degrees, is [a]
- ? Clockwise (+) = dextrorotatory; Anti-clockwise (-) = levorotatory.
- Plane-polarized light that passes through solutions of achiral compounds remains in that plane ([a] = 0, optically inactive).
- Solutions of chiral compounds rotate plane-polarized light and the molecules are said to be optically active.

Optical Activity

- Characteristic property of a compound that is optically active the compound must be chiral.
- ? The specific rotation of the enantiomer is equal in magnitude but opposite in sign.
- ? For a pair of enantiomers, the value of the specific rotation of each is the same, but opposite in sign.

Sequence Rules for Specification of Configuration

- A general method applies to determining the configuration at each chiral center (instead of to the whole molecule).
- The configuration is specified by the relative positions of all the groups with respect to each other at the chiral center.
- The groups are ranked in an established priority sequence and compared use the same priority ranking as we did for E/Z names.
- The relationship of the groups in priority order in space determines the label applied to the configuration, according to a rule.

Method:

- Assign each group priority 1-4 according to Cahn-Ingold-Prelog.
- Rotate the assigned molecule until the lowest priority group (4) is in the back, look at remaining 3 groups in a plane.
- Clockwise 1-2-3 movement is designated R (from Latin for "right").
- Counterclockwise is designated S (from Latin word for "left").

R-S Configuration

- Assign each group priority according to the Cahn-Ingold-Prelog scheme with the lowest priority group pointing away, look at remaining 3 groups in a plane.
- Clockwise is designated R (from Latin for "right").
- Counterclockwise is designated S (from Latin word for "left").

Assign R or S Configuration to each stereocenter.

1.

3.

2.

DIASTEREOMERS

? DIASTEREOMERS ARE STEREOISOMERS THAT ARE NOT ENANTIOMERS.

They are stereoisomers that are not mirror images of each

other.

- (a) and (b) are enantiomers; © and (d) are enantiomers
- (a) and (c); (a) and (d); (b) and (c); (b) and (d) are diastereomers.

Assign R or S configuration to each stereocenter.

- 2. (I) and (III) are _____
- 3. (II) and (III) are _____

Meso Compounds

- ? Tartaric acid has two chirality centers and two diastereomeric forms.
- One form is chiral and the other is achiral, but both have two chirality centers.
- An achiral compound with chirality centers is called a meso compound
 it has a plane of symmetry.
- ? The two structures on the right in the figure are identical so the compound (2R, 3S) is achiral.

Assign R/S configuration to each chiral carbon.

RACEMIC MIXTURES

50:50 mixture of enantiomers are termed as racemic mixture or racemate. Such mixtures are optically inactive. Racemates are often denoted by the symbol (+) or (-).

Example: (+) tartaric acid and (-) tartaric acid.

Summary

- Optically active describes organic molecules which rotate planepolarized light.
- A chiral molecule does not contain plane of symmetry.
- Chirality is the property of "handedness"; the presence of a tetrahedral carbon atom bonded to four different groups. Also called as a stereocenter or chirality center.
- Chiral compounds can exist as a pair of mirror image stereoisomers are called ENANTIOMERS.
- Diastereomers are stereoisomers that are not mirror images.
- Meso compounds contain stereocenters but are achiral and have plane of symmetry.
- Chiral compounds rotate the plane of polarized light, if the rotation is in clockwise direction the stereocenter has R configuration and if the rotation is in anticlockwise direction the stereocenter has S configuration. Then the molecule is said to be optically active.
- Racemates are 50:50 mixtures of (+) and (-) enantiomers.
- Chiral molecules are optically active.
- n stereocenters give 2ⁿ stereoisomers.

The number of stereocenters present in (S)-Ibuprofen.

Practice problem

1. In the following Fischer projections, solve the questions given below.

- 2. The configuration of II and IV stereoisomers is ______.
- 3. Optically active stereoisomers are _____.
- 4. The meso compounds are _____.
- 5. I and III are diastereomers or enantiomers?
- 6. III and IV are ______.

