Medical Chemistry

Solutioms \& Colloids

Definitions

A SOLUTION (soln): is a mixture of 2 or more substances in a single phase.
One constituent is usually regarded as the SOLVENT and the others as SOLUTES.

- SOLUTE: the part of a solution that is being dissolved (usually the lesser amount).
- SOLVENT: the part of a solution that dissolves the solute (usually the greater amount).
Solutions in which the solvent is WATER are called AQUEOUS SOLUTIONS.

Types of Solutions

Solute	Solvent	Appearance of solution	Example
Solid	Solid	Solid	14-carat gold $(\mathrm{Cu} / \mathrm{Ag} / \mathrm{Au})$ Brass alloy $(\mathrm{Zn} / \mathrm{Cu})$
Solid	Liquid	Liquid	Salt water
Liquid	Liquid	Liquid	Alcohol in water
Gas	Liquid	Liquid	Soda $\left(\mathrm{CO}_{2}\right.$ in water)
Gas	Gas	Gas	Air $\left(\mathrm{N}_{2}, \mathrm{O}_{2}, \ldots\right)$

CAN A SOLUTION BE SOLID?

Characteristics of Solutions

1. Distribution of particles is uniform.
2. Components do not separate on standing.
3. Components cannot be separated by filtration.
4. It is possible to make solutions of many different solute/solvent compositions.
5. Solutions are transparent (even if colored).
6. Solutions can be separated into pure components (e.g., distillation, chromatography). This separation is a physical change.

Concentration Units 1

\square Concentration: is the amount of solute in a given amount of solution (rarely "in amount of solvent").
UNITS:

1. Percent Composition:
a. \% mass (w/w) = (mass of solute/mass of soln) x 100
b. \% volume (v / v) = (volume of solute/volume of soln) $\times 100$
c. \% mass/volume (w/v) = (mass of solute/volume of soln) x 100
2. Molarity $(M)=$ moles of solute/liter of soln (v)

Concentration Units 2

3. Molality $(m)=$ moles of solute/kg of SOLVENT
4. Parts per million (ppm) $=$ (mass of solute/mass of soln) $\times 10^{6}$
5. mole fraction $(x)=$ moles of solute/total moles of soln
6. Mass per volume (mg / L) = mass of solute/liter of soln
7. Normality (N) = equivalents of solute/liter of soln

Concentration Units 3

- $\mathbf{M}=\mathbf{m}$ when the solvent is distilled $\mathrm{H}_{2} \mathrm{O}$ since its density $=1$ then, $1 \mathrm{~L}=1 \mathrm{~kg}$ (NOT salt $\mathrm{H}_{2} \mathrm{O}$).
$\square \mathrm{ppm}=10^{3} \mathrm{ppb}$ (part per billion) $=10^{6} \mathrm{ppt}$ (part per trillion)
\square Mass (moles) of soln = mass (moles) of solute + mass (moles) of solvent
\square Common mass ratios for solutions and solids are:

Units	Solutions		Solids	
ppm	mg / L	$\mu \mathrm{g} / \mathrm{mL}$	$\mathrm{mg} / \mathrm{kg}$	$\mu \mathrm{g} / \mathrm{g}$
ppb	$\mu \mathrm{g} / \mathrm{L}$	$\mathrm{ng} / \mathrm{mL}$	$\mu \mathrm{g} / \mathrm{kg}$	ng / g
ppt	ng / L	$\mathrm{pg} / \mathrm{mL}$	$\mathrm{ng} / \mathrm{kg}$	pg / g

Example 1: An IV soln is prepared by dissolving 5.0 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in dist. $\mathrm{H}_{2} \mathrm{O}$ to make 100 mL soln. Calculate (a) molarity M, (b) $\% \mathrm{w} / \mathrm{v}$, and (c) ppm of the IV soln.

Solution:

(a) Convert: $\mathrm{g} \rightarrow$ moles of glucose.

Since, molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.0 \mathrm{~g} / \mathrm{mol}$.
Then, $5.0 \mathrm{~g} / \mathrm{x}(1 \mathrm{~mol} / 180.0 \mathrm{~g})=/ 2.78 \times 10^{-2} \mathrm{~mol}$.
Thus, $\mathrm{M}=$ moles of solute/ L of soln

$$
=2.78 \times 10^{-2} \mathrm{hol} / 1.00 \times 10^{-2} \mathrm{~L} / 2.78 \mathrm{M}
$$

(b) $\% \mathrm{w} / \mathrm{v}=($ mass of solute/volume of soln) $\times 100 \%$

$$
\begin{aligned}
& =(5.0 \text { g glucose/ } 100 \mathrm{~mL} \text { soln }) \times 100 \% \\
& =5.0 \%
\end{aligned}
$$

(c) $\mathrm{ppm}=\left(\right.$ mass of solute $/ \mathrm{mass}$ of soln) $\times 10^{6}=(\mathbf{5 . 0} \mathbf{~ g} / \mathbf{1 0 0} \mathbf{g}) \times 10^{6}$ $=5.0 \times 10^{4}$ [since $\mathrm{d}\left(\mathrm{H}_{2} \mathrm{O}\right)=1,100 \mathrm{~mL}=100 \mathrm{~g}$]

Preparing Solutions (1.0 M NaCl)

Dilution

\square Dilution: is adding extra solvent to decrease the concentration of a soln.
\square The amount of solute remains constant before and after dilution, but the concentration decreases.

Before dilution After dilution

$$
\begin{aligned}
\text { Conc }_{1} \times \mathrm{Vol}_{1} & =\mathrm{Conc}_{2} \times \mathrm{Vol}_{2} \\
M_{1} \times V_{1} & =M_{2} \times V_{2} \\
\%_{1} \times V_{1} & =\%_{2} \times V_{2}
\end{aligned}
$$

\square Concentrations and volumes can be most units as long as they are consistent.

Example: How do we prepare 200 mL of a 3.5 M soln of acetic acid if we have a bottle of conc acetic acid (6.0 M) ?

Given:

	Initial soln	Final soln
Concentration:	6.0 M	3.5 M
Volume:	? L	0.20 L

Find: L of initial acetic acid
Solve: $\quad M_{1} \times V_{1}=M_{2} \times V_{2}$
6.0 M x V $1=3.5 \mathrm{M} \times 0.20 \mathrm{~L}$
$\mathrm{V}_{1}=3.5 \mathrm{M} \times 0.20 \mathrm{~L} / 6.0 \mathrm{M}=0.12 \mathrm{~L}$
\square Put $0.12 \mathrm{~L}(120 \mathrm{~mL})$ of conc acetic acid in a $200-\mathrm{mL}$ volumetric flask, add some water and mix, and then fill to the mark with water.

How $\mathrm{H}_{2} \mathrm{O}$ Dissolves Ionic Compounds

Consider NaCl (solute) dissolving in water (solvent).
The water H -bonds have to be interrupted,

- NaCl dissociates into and Cl,

Cat/Anions attract oppositely charged ends of molecules ($\mathrm{Va}+\ldots . \mathrm{OH}_{2}$ and $\mathrm{Cl} \cdot \mathrm{N}_{2} 8 \mathrm{H}_{2} \mathrm{O}$).

- When attraction forces of ions to H_{2} molecules is greater than ionic bond (keeping ion in crystal), the ion will be completely removed from the crystal and surrounded by molecules (HYDRATED ions).
Such interaction between solute and solvent is generally called SOLVATION.

How $\mathrm{H}_{2} \mathrm{O}$ Dissolves Covalent Compounds

> Molecules should have no more than $\mathbf{3 C}$ atoms for each O, N, or F atom.
$>$ Examples: Acetic Acid $\mathrm{CH}_{3} \mathrm{COOH}$ is soluble but benzoic acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is not.
$>$ Although table sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, contains a large number of C atoms, it is very soluble in $\mathrm{H}_{2} \mathrm{O}$ because it has many O atoms and $\mathrm{O}-\mathrm{H}$ bonds that can form many H -bonds with $\mathrm{H}_{2} \mathrm{O}$.
2. Compounds rarely react with $\mathrm{H}_{2} \mathrm{O}$ giving ions

$$
\begin{array}{ll}
\text { E.g. } 1 & \mathrm{HCl}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
\text { E.g. } 2 & \mathrm{SO}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{array}
$$

