Medical Chemistry

Solutions & Colloids

Definitions

- □ A **SOLUTION** (soln): is a mixture of 2 or more substances in a single phase.
- One constituent is usually regarded as the SOLVENT and the others as SOLUTES.
- □ SOLUTE: the part of a solution that is being dissolved (usually the lesser amount).
- **SOLVENT:** the part of a solution that dissolves the solute (usually the greater amount).
- Solutions in which the solvent is WATER are called AQUEOUS SOLUTIONS.

Types of Solutions

Solute	Solvent	Appearance of solution	Example
Solid	Solid	Solid	14-carat gold (Cu/Ag/Au) Brass alloy (Zn/Cu)
Solid	Liquid	Liquid	Salt water
Liquid	Liquid	Liquid	Alcohol in water
Gas	Liquid	Liquid	Soda (CO ₂ in water)
Gas	Gas	Gas	Air (N ₂ , O ₂ ,)

CAN A SOLUTION BE SOLID?

Characteristics of Solutions

- 1. Distribution of particles is uniform.
- 2. Components do not separate on standing.
- 3. Components cannot be separated by filtration.
- 4. It is possible to make solutions of many different solute/solvent compositions.
- 5. Solutions are transparent (even if colored).
- 6. Solutions can be separated into pure components (e.g., distillation, chromatography). This separation is a physical change.

Concentration Units 1

- Concentration: is the amount of solute in a given amount of solution (rarely "in amount of solvent"). <u>UNITS:</u>
- **1. Percent Composition:**
- a. % mass (w/w) = (mass of solute/mass of soln) x 100
- b. % volume (v/v) = (volume of solute/volume of soln) x 100
- c. % mass/volume (w/v) = (mass of solute/volume of soln) x 100
- 2. Molarity (M) = moles of solute/liter of soln (v)

Concentration Units 2

- 3. Molality (m) = moles of solute/kg of SOLVENT
- 4. Parts per million (ppm) = (mass of solute/mass of soln) x 10⁶
- 5. mole fraction (x) = moles of solute/total moles of soln
- 6. Mass per volume (mg/L) = mass of solute/liter of soln
- 7. Normality (N) = equivalents of solute/liter of soln

Concentration Units 3

- □ **M** = **m** when the solvent is distilled H_2O since its density = 1 then, 1 L = 1 kg (NOT salt H_2O).
- **D** ppm = 10^3 ppb (part per billion) = 10^6 ppt (part per trillion)
- Mass (moles) of soln = mass (moles) of solute + mass (moles) of solvent
- Common mass ratios for solutions and solids are:

Units	Solutions		Solids	
ppm	mg/L	µg/mL	mg/kg	µg/g
ppb	μg/L	ng/mL	µg/kg	ng/g
ppt	ng/L	pg/mL	ng/kg	pg/g

Example 1: An IV soln is prepared by dissolving 5.0 g glucose (C₆H₁₂O₆) in dist. H₂O to make 100 mL soln. Calculate (a) molarity M, (b) % w/v, and (c) ppm of the IV soln.

Solution:

(a) Convert: $g \rightarrow moles of glucose.$ Since, molar mass of $C_6H_{12}O_6 = 180.0 \text{ g/mol}.$ Then, 5.0 g x (1 mol/180.0 g) = 2.78 x 10⁻² mol. Thus, M = moles of solute/L of soln = 2.78 x 10⁻² mol/1.00 X 10⁻² L = 2.78 M

(c) ppm = (mass of solute/mass of soln) x 10^6 = (5.0 g/100 g) x 10^6 = 5.0 x 10^4 [since d(H₂O) = 1, 100 mL = 100 g]

Preparing Solutions (1.0 M NaCl)

Dilution

Dilution: is adding extra solvent to decrease the concentration of a soln.

The amount of solute remains constant before and after dilution, but the concentration decreases.

Before dilution After dilution $Conc_1 \times Vol_1 = Conc_2 \times Vol_2$ $M_1 \times V_1 = M_2 \times V_2$ $\%_1 \times V_1 = \%_2 \times V_2$

Concentrations and volumes can be most units as long as they are consistent. **Example:** How do we prepare 200 mL of a 3.5 M soln of acetic acid if we have a bottle of conc acetic acid (6.0 M) ?

Given:

		Initial soln	Final soln	
Concentration:		6.0 M	3.5 M	
	Volume:	? L	0.20 L	
Find:	L of initial acetic acid			
Solve:	$M_1 \times V_1$	$= M_2 \times V_2$		
	6.0 M	x V ₁ = 3.5 M x 0.2	0 L	
	$V_1 = 3.5 M x$	0.20 L/ 6.0 M = 0.1	Í2 L	
	• 0 1 2 I (1 2 0)	ml) of conclusion	acid in a 200 m	

Put 0.12 L (120 mL) of conc acetic acid in a 200-mL volumetric flask, add some water and mix, and then fill to the mark with water.

How H₂O Dissolves Ionic Compounds

- □ Consider NaCl (solute) dissolving in water (solvent).
- □ The water H-bonds have to be interrupted,
- □ NaCl dissociates into Na⁺ and Cl⁻,
- □ Cat/Anions attract oppositely charged ends of H₂O molecules (Na⁺....^δ-OH₂ and Cl⁻....^{δ+}H₂O).
- When attraction forces of ions to H₂O molecules is greater than ionic bond (keeping ion in crystal), the ion will be completely removed from the crystal and surrounded by H₂O molecules (HYDRATED ions).
- Such interaction between solute and solvent is generally called SOLVATION.

How H₂O Dissolves Covalent Compounds

- Molecules should have no more than 3 C atoms for each O, N, or F atom.
- **Examples:** Acetic Acid CH_3COOH is soluble but benzoic acid C_6H_5COOH is not.
- Although table sugar, C₁₂H₂₂O₁₁, contains a large number of C atoms, it is very soluble in H₂O because it has many O atoms and O-H bonds that can form many H-bonds with H₂O.
- 2. Compounds rarely react with H₂O giving ions

E.g. 1 $HCl(g) + H_2O(I) \rightarrow Cl^{-}(aq) + H_3O^{+}(aq)$

E.g. 2 SO₃(g) + 2H₂O(I) \rightarrow HSO₄⁻(aq) + H₃O⁺(aq)