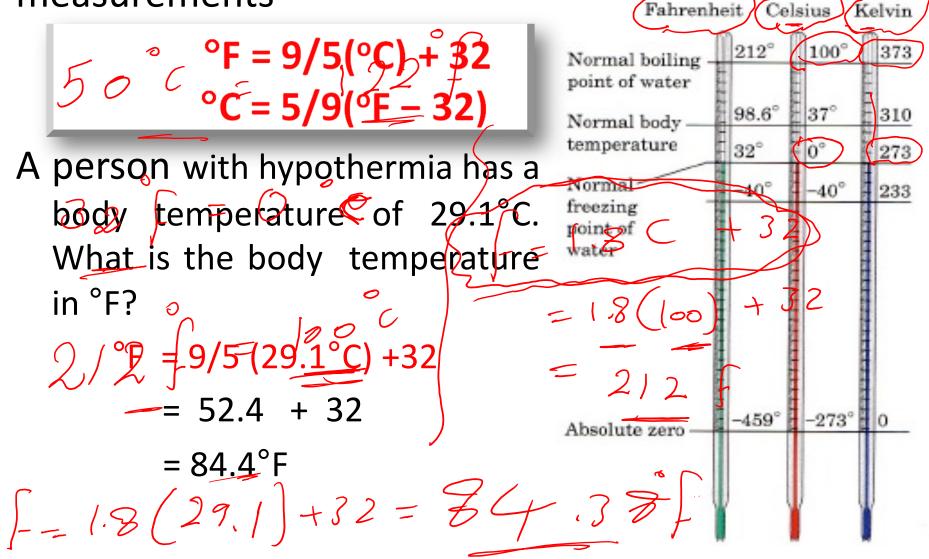


Chapter 1 Matter, Energy and Measurements

Lecture 2

General Chemistry

• OUTLINE


- ✓ The States of Matter
- ✓ Density and Specific Gravity.
- ✓ Energy
- ✓ Heat

- The base unit (SI) is the second. 60 s = 1 min 60 min = 1 h
 - E: Temperature
- 1. The **Celsius** scale is based on the properties of water.
 - 0°C is the freezing point of water.
 - •100°C is the boiling point of water.
- 2. The **Kelvin** is the SI unit of temperature.
 - •There are no negative Kelvin temperatures.

K = °<u>C + 273.15</u>

The Fahrenheit scale is not used in scientific

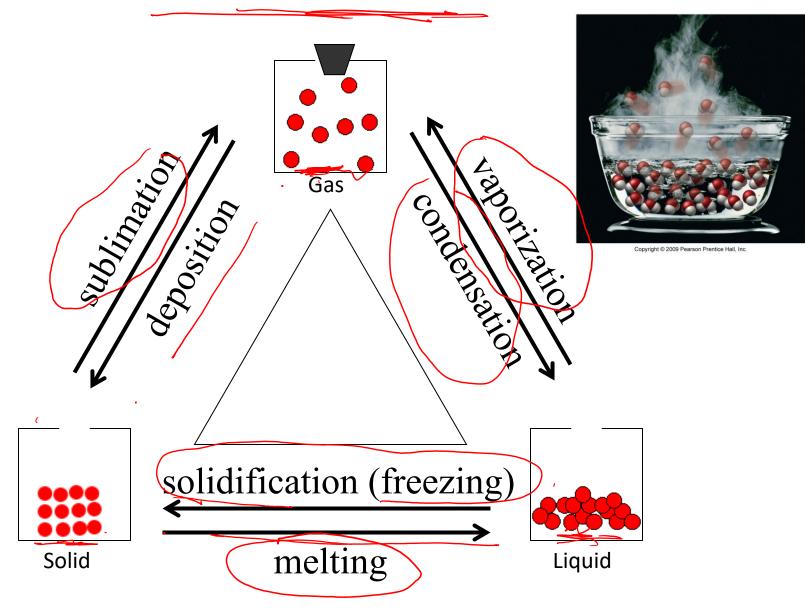
measurements

Unit conversions: The Factor-Label Method

length	Mass	Volume
1 in. = 2.54 cm	1 oz = 28.35 g	1 qt = 0.946 L
1 m 39.37 in.	1 lb = 453.6 g	1 gal = 3.785 L
1 mile = 1.609 km	1 kg = 2.205 lb	1 L = 33.81 fl oz
	1 g = 15.43 grams	1 fl oz = 29.57 ml
		1 L = 1.057 qt


Example 1.2 The distance between Rome and Milan 358 miles.
 How many km separate the two cities?

35358 males $\times \frac{1.609 \text{ km}}{1.609 \text{ km}} = 55766 \text{ km}^{57}$


Solution:

1 mile = 1.60 km

- Example: The label on a container of olive oil says 1.844 gal. How many ml does the container hold? solution
- $1.844 \ gal \times \frac{3.785}{1 \ gal} \times \frac{1000 \ ml}{1 \ L} = 6980 \ ml$ • Example: Calculate the number of kilometers in 8.55 Solution: 8.55 mile $\times \frac{1.609 \text{ km}}{1.609 \text{ km}} = 13.76 \text{ km}$

1.6 The States of Matter

Specific Heat

0

Specific heat: the amount of heat necessary to raise the temperature of 1 g of a substance by

1°C.

	Specific Heat		Specific Heat		
Substance	$(cal/g \bullet ^{\circ}C)$	Substance	(cal/g \bullet° C)		
<i>W</i> ater	1.00	Wood	0.42		
Ice	0.48	Glass	0.22		
Steam	0.48	Rock	0.20		
Iron	0.11	Ethanol	0.59		
Aluminum	0.22	Methanol	0.61		
Copper	0.092	Ether	0.56		
Lead	0.038	Acetone	0.52		

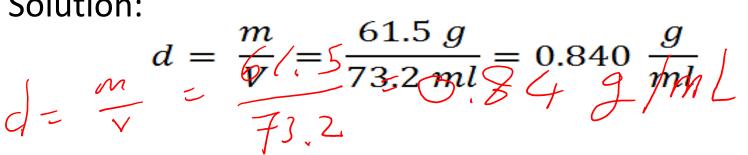
Specific Heat

The amount of heat change when matter is heated or cooled is given by the following equation

Amount of heat = specific heat x mass x change in temperature

 $= \mathbf{SH} \mathbf{x} \mathbf{m} \mathbf{x} (\mathbf{T}_2 - \mathbf{T}_1)$

 $Q = SH \cdot M \cdot (T_2 - T_1)$ ----1 kg


Example: how many <u>calories</u> are required to heat 352 g of water from 23°C to 95°C? <u>Solution</u>

Amount of heat = specific heat x mass x change in temperature = $SH x m x (T_2 - T_1)$ $Amount of heat = \frac{1.00 \text{ cal}}{9.0\%} \times 352 \text{ g x } (95 - 23)^{\circ} \text{C}$ = 25.344 $= 2.5 \times 10^4$ cal = 25 kcal

1.7 DENSITY AND SPECIFIC GRAVITY

A. Density

- The density of a sample of matter is defined as the mass per unit volume: d = density, m = mass, V = volume• Example: If 73.2 ml of a liquid has a mass of 61.5 g. What is its density in g/ml?
- Solution:

Specific Gravity

- Specific gravity: the density of a substance compared to water as a standard
 - it has no units (it is dimensionless).
 - Example: the density of copper at 20°C is 8.92 g/mL.
 The density of water at this temperature is 1.00 g/mL.
 What is the specific gravity of copper?

5 Specific gravity =
$$\frac{8.92 \text{ g/mL}}{1.00 \text{ g/mL}} = \frac{8.9272}{1.00 \text{ g/mL}}$$

Chemical connections Hypothermia and Hyperthermia

- Hypothermia is a condition in which core temperature drops below the required temperature for normal <u>metabolism</u> and body functions which is defined as 35.0 °C (95.0 °F).
- As body temperature decreases, characteristic symptoms occur such as <u>shivering</u> and <u>mental</u> <u>confusion</u>.
- **Hyperthermia** is opposite to hypothermia, it can be caused by either high outside temperature or by a body itself.

@chem3,phys