

8.5 Acid Ionization Constant

- The equilibrium constants indicates the strength of the acid, for a weak acid (HA):

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

- The equilibrium expression for this ionization is:

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]\left[\underline{\mathrm{H}_{2} \mathrm{O}}\right]}
$$

- Since the concentration of water is constant we can combine the two constants together:
 hotels us
how the strong acid is

- Acid strength can be expressed as pK_{2} because the equilibrium constant is a number with negative exponent.

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

- There is inverse relationship between K_{a} and pK_{a}, The weaker the acid the smaller it K_{a} value, but the larger its
- Example 8.2

- The K_{a} for benzoic acid is 6.5×10^{-5}. what is the pK_{a} of this acid?

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\
& \mathrm{pK}_{\mathrm{a}}=-\log \left(6.5 \times 10^{-5}\right) \\
& \mathrm{pK}_{\mathrm{a}}=4.19
\end{aligned}
$$

- Example 8.3
- Which is the stronger acid:
- (a) Benzoic acid with a k_{a} of 6.5×10^{-5} or hydrocynanic acid with a k_{a} of 4.9×10^{-10} ? 9.3
- (b) Boric acid with a pK ${ }_{a}$ of 9.14 or carbonic acid with a pK_{a} of 6.37?
- Solution:
- (a) Benzoic acid is stronger; it has the greater K_{a} value.
- (b) Carbonic acid is stronger; it has the smaller pK_{a} value.

Acid	Name	K_{a}	pK_{a}
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	7.5×10^{-3}	2.12
HCOOH	Formic acid	1.8×10^{-4}	$\frac{3.75}{}$
$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$	Lactic acid	8.4×10^{-4}	3.08
$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid	1.8×10^{-5}	4.75
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid	4.3×10^{-7}	6.37
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Dihydrogen phosphate ion	6.2×10^{-8}	7.21
$\mathrm{H}_{3} \mathrm{BO}_{3}$	Boric acid	7.3×10^{-10}	9.14
NH_{4}^{+}	Ammonium ion	5.6×10^{-10}	9.25
HCN^{2}	Hydrocyanic acid	4.9×10^{-10}	9.31
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	Phenol	1.3×10^{-10}	9.89
HCO_{3}^{-}	Bicarbonate ion	5.6×10^{-11}	10.25
$\mathrm{HPO}_{4}{ }^{2-}$	Hydrogen phosphate ion	2.2×10^{-13}	12.66

8.6: Some Properties of Acids and Bases

- A. Reactions with metals
- The active metal reacts with acids to produce H_{2} gas (redox reaction)

B. Neutralization

Acid + Base \longrightarrow Salt + Water

C. Reaction With Metal Oxide $\mathrm{Na}_{2} \mathrm{O}$

- Strong acids react with metal oxides to give salt and water.

D. Reaction With Metal Hydroxide

- Acids react with metal hydroxide to give salt and water.

$\mathrm{HCl}+\mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{HOH}$

- Both acid and metal hydroxide are ionized in aqueous solutions.
- The net ionic equation is

$$
\begin{gathered}
\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}+\mathbf{C l}^{-}+\mathbf{K}^{+}+\mathbf{O H}^{-} \longrightarrow 2 \mathbf{H}_{2} \mathbf{O}+\mathbf{C l}^{-}+\mathbf{K}^{+} \\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

E. Reaction with Carbonate and Bicarbonate

- Strong acids react with carbonate and bicarbonate producing CO_{2} gas. The reaction takes place on two steps.

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Baking powder contains the weak acid

8.7 Self Ionization of Water

- Water ionizes according to the equation

$$
K_{\mathrm{eq}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}
$$

- The concentration of water is constant since the degree of self ionization is slight

$$
\left.K_{\mathrm{w}}=K_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- In pure water the

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}} \\
& K_{\mathrm{W}}=1.0 \times 10^{-14}
\end{aligned}
$$

$\mathrm{HH}=-\log [\mathrm{H}+8.8 \mathrm{pH}$ and pOH $p \mid I_{a}=-1-y K_{a}$

- Because hydronium ion concentrations for most solutions are numbers with negative exponents, these concentrations are more commonly expressed as pH

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

$$
K_{\mathrm{w}}=1.0 \times 10^{-14}
$$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

$-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}^{+}\right] \oplus-\log \left[\mathrm{OH}^{-}\right]=-\log \left(1 \times 10^{-14}\right)$
since $\quad \begin{gathered}\mathrm{p} K_{\mathrm{w}}=-\log K_{\mathrm{w}}=-\log 1.0 \times 10^{-14} \\ \mathrm{pH}+\mathrm{pOH}=14\end{gathered}$

> A solution is acidic if its pH is less than 7 A solution is basic if its pH is more than 7 A solution is neutral if its pH is equal to 7

A solution is acidic if its pH is less than 7 A solution is basic if its pH is more than 7 A solution is neutral if its pH is equal to 7

- Example
- (a) The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a certain liquid detergent is $1.4 \times 10^{-9} \mathrm{M}$. What is its pH
- (b) The pH of black coffee is 5.3 . what is its $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
- Solution
- (a)

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pH} & =-\log \left[1.4 \times 10^{-9}\right]=8.85
\end{aligned}
$$

- (b)

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\text {antilog-5.3 }=5 \times 10^{-6}
$$

NNDOI

TMP1

MNCMETBE

