

#### **8.5 Acid Ionization Constant**

 The equilibrium constants indicates the strength of the acid, for a weak acid (HA):

$$\underline{HA} + \underline{H_2O} = (\underline{A^-} + \underline{H_3O^+})$$

• The equilibrium expression for this ionization is:

 $\mathbf{K}_{eq} = \frac{[A^{-}][H_3O^{+}]}{[HA][H_2O]}$ 

 Since the concentration of water is constant we can combine the two constants together:

Ka tells us how the strong acid is

$$= \frac{[A^{-}][H_3O^{+}]}{[HA]}$$

 $\mathbf{K}_{a} = \mathbf{K}_{eq} [\mathbf{H}_{2}\mathbf{O}] =$ 



- Acid strength can be expressed as  $pK_a$  because the equilibrium constant is a number with negative exponent.  $pK_a = -\log K_a$
- There is inverse relationship between K<sub>a</sub> and pK<sub>a</sub>, The weaker the acid the smaller it K<sub>a</sub> value, but the larger its
- Example 8.2

pK<sub>a</sub>.

• The  $K_a$  for benzoic acid is 6.5 x 10<sup>-5</sup>. what is the  $pK_a$  of this acid?  $pK_a = -\log K_a$ 

$$pK_a = -log(6.5 \times 10^{-5})$$
  
 $pK_a = (4.19)$ 



- Example 8.3
- Which is the stronger acid:
- (a) Benzoic acid with a  $k_a$  of 6.5 x 10<sup>-5</sup> or hydrocynanic acid with a  $k_a$  of 4.9 x 10<sup>-10</sup>? 9.3

4,19

- (b) Boric acid with a  $pK_a$  of 9.14 or carbonic acid with a  $pK_a$  of 6.37?
- Solution:
- (a) Benzoic acid is stronger; it has the greater K<sub>a</sub> value.
- (b) Carbonic acid is stronger; it has the smaller pK<sub>a</sub> value.

| Acid                             | Name                     | K <sub>a</sub>          | pK <sub>a</sub> |
|----------------------------------|--------------------------|-------------------------|-----------------|
| H <sub>3</sub> PO <sub>4</sub>   | Phosphoric acid          | 7.5 x $10^{-3}$         | 2.12            |
| НСООН                            | Formic acid              | 1.8 $\times 10^4$       | 3.75            |
| CH <sub>3</sub> CH(OH)COOH       | Lactic acid              | 8.4 $\times 10^4$       | 3.08            |
| CH₃COOH                          | Acetic acid              | 1.8 x $10^{-5}$         | 4.75            |
| H <sub>2</sub> CO <sub>3</sub>   | Carbonic acid            | 4.3 x 10 <sup>-7</sup>  | 6.37            |
| $H_2PO_4^-$                      | Dihydrogen phosphate ion | 6.2 x 10 <sup>-8</sup>  | 7.21            |
| H <sub>3</sub> BO <sub>3</sub>   | Boric acid               | 7.3 x $10^{-10}$        | 9.14            |
| NH4 <sup>+</sup>                 | Ammonium ion             | 5.6 x 10 <sup>-10</sup> | 9.25            |
| HCN                              | Hydrocyanic acid         | 4.9 x 10 <sup>-10</sup> | 9.31            |
| C <sub>6</sub> H <sub>5</sub> OH | Phenol                   | 1.3 x $10^{-10}$        | 9.89            |
| HCO <sub>3</sub> <sup>-</sup>    | Bicarbonate ion          | 5.6 x 10 <sup>-11</sup> | 10.25           |
| HPO <sub>4</sub> <sup>2-</sup>   | Hydrogen phosphate ion   | 2.2 x $10^{-13}$        | 12.66           |

### 8.6: Some Properties of Acids and Bases

- A. Reactions with metals
- The active metal reacts with acids to produce H<sub>2</sub> gas (redox reaction)









 Strong acids react with metal oxides to give salt and water.





D. Reaction With Metal Hydroxide

• Acids react with metal hydroxide to give salt and water.

## $\mathsf{HCI} + \mathsf{KOH} \rightarrow \mathsf{KCI} + \mathsf{HOH}$

- Both acid and metal hydroxide are ionized in aqueous solutions.
- The net ionic equation is

 $H_{3}O^{+} + C\Gamma + K^{+} + OH^{-} \rightarrow 2H_{2}O + C\Gamma + K^{+}$  $H_{3}O^{+} + OH^{-} \rightarrow 2H_{2}O$ 



# E. Reaction with Carbonate and Bicarbonate

• Strong acids react with carbonate and bicarbonate producing  $CO_2$  gas. The reaction takes place on two steps.

 $2\text{HCl}(aq) + \text{Na}_2\text{CO}_3(aq) \longrightarrow 2\text{NaCl} + \text{CO}_2(g) + 3\text{H}_2\text{O}(l)$ 

![](_page_15_Figure_3.jpeg)

![](_page_16_Picture_0.jpeg)

## 8.7 Self Ionization of Water (430

Water ionizes according to the equation

![](_page_17_Figure_2.jpeg)

= 0.002

The equilibrium expression is

۱ľ

 $K_{eq} = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$ The concentration of water is constant since the degree of self ionization is slight

$$K_{\rm w} = K_{\rm eq} [{\rm H}_2{\rm O}]^2 = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-]$$
  
n pure water the  $[{\rm H}_3{\rm O}^+] = [{\rm O}{\rm H}^-] = 1.0 \times 10^{-7}$   
 $K_{\rm W} = 1.0 \times 10^{-14}$ 

![](_page_18_Picture_0.jpeg)

pH = - loy (17) 8.8 pH and pOH

hydronium Because ion concentrations for most solutions are numbers with negative exponents, these concentrations are more commonly expressed as pH  $pH = -log[H^+]$ pOH = -log[OH]

![](_page_19_Picture_2.jpeg)

PlZa=-l-yta

The pH of this soft drink is 3.12. Soft drinks are often quite acidic.

![](_page_20_Picture_0.jpeg)

$$K_{\rm w} = 1.0 \ge 10^{-14}$$

$$K_{w} = [H^{+}] [OH^{-}] = 1 \times 10^{-14}$$
  
-log K<sub>w</sub> = -log [H^{+}] + -log [OH^{-}] = -log (1 \times 10^{-14})  
since  $pK_{w} = -log K_{w} = -log 1.0 \times 10^{-14}$   
 $pH + pOH = 14$ 

![](_page_22_Picture_0.jpeg)

A solution is acidic if its pH is less than 7 A solution is basic if its pH is more than 7 A solution is neutral if its pH is equal to 7

a) The [H\_OF] of a certain liquid detergent is 1.4 x 10<sup>-1</sup>M. Whe

(b) The off black coffee is 5.3, what is its [b]

A solution is acidic if its pH is less than 7 A solution is basic if its pH is more than 7 A solution is neutral if its pH is equal to 7

- Example
- (a) The [H<sub>3</sub>O<sup>+</sup>] of a certain liquid detergent is 1.4 x 10<sup>-9</sup>M. What is its pH
- (b) The pH of black coffee is 5.3. what is its  $[H_3O^+]$ .
- <u>Solution</u> • (a) • (b)  $pH = -log[H^+]$  $pH = -log[1.4 \times 10^{-9}] = 8.85$

[H<sub>3</sub>O<sup>+</sup>] = antilog-5.3 = 5 x 10<sup>-6</sup>  
$$-5,3$$

![](_page_25_Picture_0.jpeg)

![](_page_26_Picture_0.jpeg)