Chapter 8 Acids and Bases Lecture 11

8.1 Introduction Definition of acids according to Arrhenius

• Acids "These are the substances which produce Hydronium ions (H_3O^+) in aqueous solutions".

Definition of base according to Arrhenius

 Bases "These are the substances which produce hydoxide ions OH⁻ in aqueous solutions".

 $NH_3(g) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$

8.2 Acid and Base Strength

• According to Arrhenius definition:

 Strong Acid: "It is the acid that is completely ionized in water"

 $HCl(aq) \xrightarrow{H_2O} H^+(aq) + Cl^-(aq)$

- Weak acid " It is the acid which is partially ionized in water"
 CH₃COOH(aq) + H₂O CH₃COO⁻(aq) + H₃O⁺(aq)
- Also, bases can be classified into strong and weak.

Names of Some Acid and Bases

Formula	Name	Formula	Name
HCI	Hydrochloric acid	LiOH	Lithium hydroxide
HBr	Hydrobromic acid	NaOH	Sodium hydroxide
HI	Hydroiodic acid	КОН	Potassium hydroxide
HNO ₃	Nitric acid	Ba(OH) ₂	Barium hydroxide
H ₂ SO ₄	Sulphuric acid		
HCIO ₄	Perchloric acid		

8.3 Bronsted-Lowry Acids and Bases

- According to Bronsted-Lowry:
- Acid "It is a proton donor
- Base " It is a proton acceptor.
- <u>Acid-base reaction</u> "It is a proton transfer reaction"
- <u>Conjugate Base</u> "It is the substance formed when an acid donates its proton to another molecule or ion"

			Conjugate			
	Acid	Name of acid	Base	Name of ion		
Strong	HI	Hydroiodic acid	F	Iodide	Wea	ak
Acids	HCI	Hydrochloric acid	Cl⁻	Chloride	Bas	es
	H_2SO_4	Sulfuric acid	HSO ₄ ⁻	Hydrogen sulfate	1	
	HNO ₃	Nitric acid	NO_3^-	Nitrate		
	H_3O^+	Hydronium ion	H ₂ O	Water		
	HSO ₄ ⁻	Hydrogen sulfate ion	SO4 ²⁻	Sulfate		
	H ₃ PO ₄	Phosphoric acid	$H_2PO_4^-$	Dihydrogen phosphat	te	
	CH ₃ COOH	Acetic acid	CH ₃ COO⁻	Acetate		
	H_2CO_3	Carbonic acid	HCO_3^-	Bicarbonate		
	H ₂ S	Hydrogen sulfide	HS⁻	Hydrogen sulfide		
	$H_2PO_4^-$	Dihydrogen phosphate	HPO_4^{2-}	Hydrogen phosphate		
	NH_4^+	Ammonium ion	NH ₃	Ammonia		
	HCN	Hydrocyanic acid	CN⁻	Cyanide		
	C_6H_5OH	Phenol	$C_6H_5O^{-1}$	Phenoxide		
	HCO ₃ ⁻	Bicarbonate ion	CO ₃ ²⁻	Carbonate		
	HPO ₄ ²⁻	Hydrogen phosphate ion	PO ₄ ³⁻	Phosphate		
Weak	H ₂ O	Water	OH⁻	Hydroxide	Stro	ng
Acids	C_2H_5OH	Ethanol	C₂H₅O ⁻	Ethoxide	Bas	es

Examples of Common acids and their conjugate bases

- An acid can be positively charged, neutral or negatively charged. H₃O⁺, H₂CO₃ and H₂PO₄⁻
- Acids are classified as Monoprotic, diprotic or triprotic acids. E.g. HCl, CH₃COOH, H₂SO₄, H₂CO₃, and H₃PO₄

Revision questions

- ❑Which of the following species can be Brønsted–Lowry bases: (a) LiOH; (b) Cl⁻ (c) CH₄?
- <u>ANALYSIS</u> A Brønsted–Lowry base must contain a lone pair of electrons, but it may be neutral or have a net negative charge.
- <u>SOLUTION</u>
- a. LiOH is a base since it contains hydroxide, -OH, which has three lone pairs on its O atom.
- b. Cl⁻ is a base since it has four lone pairs.
- c. CH_4 is not a base since it has no lone pairs.

- Draw the conjugate acid of each base:
- (a) F^- ; (b) NO_3^- .
- <u>SOLUTION (add a Proton H⁺)</u>
- a. F⁻ + H⁺ gives HF as the conjugate acid. HF has no charge since a proton with a +1 charge is added to an anion with a −1 charge.
- b. $NO_3^- + H^+$ gives HNO_3 (nitric acid) as the conjugate acid. HNO_3 has no charge since a proton with a +1 charge is added to an anion with a -1 charge.

Draw the conjugate base of each acid: (a) H₂O;
 (b) HCO₃⁻.

- ANALYSIS To draw a conjugate base from an acid, remove a proton, H⁺. This adds –1 to the charge of the acid to give the charge on the conjugate base.
- <u>SOLUTION</u>
- a. Remove H^+ from H_2O to form OH^-
- b. Remove H⁺ from HCO_3^- to form CO_3^{2-} , the conjugate base. CO_3^{2-} .

END OF THE LECTURE