Chapter 8 Acids and Bases Lecture 11

8.1 Introduction

Definition of acids according to Arrhenius

- Acids "These are the substances which produce Hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in aqueous solutions".

$$
\begin{aligned}
& \mathbf{H}_{2} \mathrm{O}_{(\ell)}+\mathrm{HCl}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{3} \mathbf{O}^{+}+\mathrm{Cl}^{-} \\
& \mathbf{H}^{+}(\mathrm{aq})+\mathbf{H}_{\mathbf{2}} \mathrm{O}(\boldsymbol{\ell}) \longrightarrow \mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}(\mathrm{aq})
\end{aligned}
$$

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Definition of base according to Arrhenius

- Bases "These are the substances which produce hydoxide ions OH^{-}in aqueous solutions".
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Note: Ammonia is not hydroxide but
it dissolves in water producing hydroxide ion OH^{-}

$$
\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

8.2 Acid and Base Strength

- According to Arrhenius definition:
- Strong Acid: "It is the acid that is completely ionized in water"

$$
\mathrm{HCl}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

- Weak acid " It is the acid which is partially ionized in water"
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
- Also, bases can be classified into strong and weak.

Names of Some Acid and Bases

Formula	Name	Formula	Name
HCl	Hydrochloric acid	LiOH	Lithium hydroxide
HBr	Hydrobromic acid	NaOH	Sodium hydroxide
HI	Hydroiodic acid	KOH	Potassium hydroxide
HNO_{3}	Nitric acid	$\mathrm{Ba}(\mathrm{OH})_{2}$	Barium hydroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulphuric acid		
HClO_{4}	Perchloric acid		

8.3 Bronsted-Lowry Acids and Bases

- According to Bronsted-Lowry:
- Acid "It is a proton donor
- Base " It is a proton acceptor.
- Acid-base reaction "It is a proton transfer reaction"
- Conjugate Base "It is the substance formed when an acid donates its proton to another molecule or ion"

	Acid	Name of acid	Conjugat Base	Name of ion	
Strong	HI	Hydroiodic acid	${ }^{-1}$	Iodide	Weak
Acids	HCl	Hydrochloric acid	Cl^{-}	Chloride B	Bases
\uparrow	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	HSO_{4}	Hydrogen sulfate	
	HNO_{3}	tric a	$\mathrm{NO}_{3}{ }^{-}$	Nitrate	
	$\mathrm{H}_{3} \mathrm{O}^{+}$	Hydronium ion	$\mathrm{H}_{2} \mathrm{O}$	Water	
	$\mathrm{HSO}_{4}{ }^{-}$	Hydrogen sulfate ion	$\mathrm{SO}_{4}{ }^{2-}$	Sulfate	
	$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	$\mathrm{H}_{2} \mathrm{PO}_{4}$	Dihydrogen phosphate	
	$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}$	Acetate	
	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid	$\mathrm{HCO}_{3}{ }^{-}$	Bicarbonate	
	$\mathrm{H}_{2} \mathrm{~S}$	Hydrogen sulfide	HS	Hydrogen sulfide	
	$\mathrm{H}_{2} \mathrm{PO}_{4}$	Dihydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$	Hydrogen phosphate	
	$\mathrm{NH}_{4}{ }^{4}$	Ammonium ion	NH_{3}	Ammonia	
	HCN	Hydrocyanic acid	CN^{-}	Cyanide	
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	Phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$	Phenoxide	
	$\mathrm{HCO}_{3}{ }^{-}$	Bicarbonate	$\mathrm{CO}_{3}{ }^{\text {- }}$	Carbonate	
	$\mathrm{HPO}_{4}{ }^{2-}$	Hydrogen phosphate ion	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate	
Weak		Water	OH^{-}	Hydroxide S	Strong
Acids	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$	Ethoxide B	Bases

When an acid transfers a proton to a base, the acid is converted to its conjugate base.

Conjugate acid-base pair

$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\boldsymbol{\ell}) \longrightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Hydrogen chloride (Acid)

Water

Base

Chloride ion
(Conjugate
Base of HCl)

Hydronium ion
(conjugate acid of water)

$\mathbf{C H}_{3} \mathbf{C O O H}+\mathrm{NH}_{3} \rightleftharpoons \mathbf{C H}_{3} \mathbf{C O O}^{-}+\mathbf{N H}_{4}{ }^{+}$
 Acetic acid Ammonia
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Acetate</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Ammonium</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">ion</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">ion</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Acetate | Ammonium |
| :--- | :--- |
| ion | ion |</table-markdown></div>

(Acid) Base
(Conjugate
Base of
acetic acid
(conjugate acid of ammonia

Examples of Common acids and their conjugate bases

- An acid can be positively charged, neutral or negatively charged. $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
- Acids are classified as Monoprotic, diprotic or triprotic acids. E.g. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{3} \mathrm{PO}_{4}$

Revision questions

\square Which of the following species can be Brønsted-Lowry bases: $\begin{array}{lll}\text { (a) } \mathrm{LiOH} ; & \text { (b) } \mathrm{Cl}^{-} & \text {(c) } \mathrm{CH}_{4} \text { ? }\end{array}$

- ANALYSIS A Brønsted-Lowry base must contain a lone pair of electrons, but it may be neutral or have a net negative charge.
- SOLUTION
a. LiOH is a base since it contains hydroxide, -OH , which has three lone pairs on its O atom.
b. Cl^{-}is a base since it has four lone pairs.
c. CH_{4} is not a base since it has no lone pairs.
- Draw the conjugate acid of each base:

$$
\text { (a) } \mathrm{F}^{-} \text {; }
$$

(b) $\mathrm{NO}_{3}{ }^{-}$

- SOLUTION (add a Proton H^{+})
a. $\mathrm{F}^{-}+\mathrm{H}^{+}$gives HF as the conjugate acid. HF has no charge since a proton with a +1 charge is added to an anion with a -1 charge.
b. $\mathrm{NO}_{3}{ }^{-}+\mathrm{H}^{+}$gives HNO_{3} (nitric acid) as the conjugate acid. HNO_{3} has no charge since a proton with a +1 charge is added to an anion with a -1 charge.
\square Draw the conjugate base of each acid: (a) $\mathrm{H}_{2} \mathrm{O}$; (b) HCO_{3}^{-}.
- ANALYSIS To draw a conjugate base from an acid, remove a proton, H^{+}. This adds -1 to the charge of the acid to give the charge on the conjugate base.
- SOLUTION
- a. Remove H^{+}from $\mathrm{H}_{2} \mathrm{O}$ to form $-\mathrm{OH}^{-}$
- b. Remove H^{+}from HCO_{3}^{-}to form $\mathrm{CO}_{3}{ }^{2-}$, the conjugate base. $\mathrm{CO}_{3}{ }^{2-}$.

END OF THE LECTURE

