

Chapter 1

Matter, Energy and Measurements

Lecture 1

General Chemistry

In this course our performance will be assessed according to the following:

\author{

1. Home Work
 3. Mid Term Exam
 4. Final Exam. (Theoretical)
 5. Practical
 6. Quizes
 7. Attendance
}

5 Marks
20 Marks
40 Marks
20 Marks
10 Marks
5 Marks

Total $=100$ Marks

General Chemistry

- OUTLINE

\checkmark Introduction
\checkmark Properties of matter
Measurements

Objectives

- After you have studied this chapter, you should be able to
- Use the basic vocabulary of matter and energy
- Distinguish between chemical and physical properties and between chemical and physical changes
- Apply appropriate units to describe the results of measurement

1.1 Introduction

Matter is anything that occupies space and has mass

Composition = what's in it?
E.g., water is 2 parts Hydrogen and 1 part Oxygen
, Structure -
how is it
assembled?
E.g., crystals

- Properties:
E.g., boiling point, density, flammability

Physical and Chemical Changes

Physical Change: changes in appearance but not in composition
e.g., sublimation of ice in the winter

Chemical Change changes resulting in altered composition and/or molecular structure e.g., spoilage of foods

(a)

(b)
(c)

Accuracy - how close a measurement is to the true value
Precision - how close a set of measurements are to each other

accurate
\&
precise

precise

- but
not accurate

not accurate \&
not precise
- Any measurement consists two parts number and unit.
- The measurement made in the experiment must also specify the units of that measurement.
- A unit defines the basic quantity of mass, volume, time, or whatever quantity is being measured. 305
- A number that is not followed by the correct unit usually conveys no useful information.

International system of units (SI)

- The SI is based on the metric system and uses some of metric units.
- In this chapter we will use the metric system and we will mention the preferred SI unit.

Table 1.1 Base Units in the Metric System

SI (m) s A: Length

- In the English system we use the inch, foot, the yard and the mile.
- The conversion factors are:

1 inch $=2.54 \mathrm{~cm}$

12 inches = 1 foot

- Example: Express 1.5 yards in cm.

Example: A pencil is 7.00 in long. What is its length in centimeters?

$2.54 \mathrm{~cm}=1 \mathrm{in}$

Solution
7.00 in $\times \frac{2.54 \mathrm{~cm}}{2.54 \mathrm{~cm}}=(7.00)(2.54) \mathrm{cm}=17.78 \mathrm{~cm} \mathrm{~cm} .17$

Example: A student has entered a 10.0-km run. How long is the run in miles?

Solution:

$$
10 K_{\text {max }} \times \frac{1 \mathrm{mile}}{1.6 \mathrm{~km}}=6.25 \text { mile }
$$

B: Volume

- Volume is the space occupied by a substance.
- Another common unit of volume is the liter (L). A liter is the volume occupied by one cubic decimeter. One liter of volume is equal to 1000 milliliters (mL) or 1000
- $1 \mathrm{~L}=1000 \mathrm{~mL}$
- = $1000 \mathrm{~cm}^{3}$
- $=1 \mathrm{dm}^{3}$
$m^{3}=1000 L=10^{6} \mathrm{~mL}$

Example: Convert each of the following:

1) 5 gallons to liters
$590 t \times \frac{3.785 t}{19 d t}=$
2) 2.1 gallons to ml
$1 \mathrm{gal}=3.785 \mathrm{~L}$
$2 . \lg 9 \times \frac{3.785 K}{1 g_{a t}} \times \frac{10^{3} 420}{1 \Delta}=$

C: Mass

- Mass is the quantity of matter in an object.
- Weight is the force of a mass experiences under the pull gravity.

$$
\begin{aligned}
& 1 \text { kilogram }(\mathrm{kg})=1000 \mathrm{~g} \\
& 1 \underline{\text { gram }}=1000 \text { milligram } \\
& \text { or } \\
& 1 \text { milligram }=0.001 \mathrm{~g}
\end{aligned}
$$

$1 \mathrm{~kg}=2.205 \mathrm{lb}$

- Example: How many kilograms are there in 241 lb ?
- Solution:

- Prefixes: In both the SI and metric systems to convert from larger or smaller unit we use $10,100,1 / 10,1 / 100$ or other power of 10.
- 1 kilometer $(\mathrm{km})=1000$ meters

1 centimeter $(\mathrm{cm})=0.01$ meter

prefixes.swf
1 nanometer $(\mathrm{nm})=10^{-9}$ meter

PREFIX	SYMBOL	MEANING	EXAMPLE
Tera-	T	$1,000,000,000,000$, or 10^{12}	1 terameter $(\mathrm{Tm})=1 \times 10^{12} \mathrm{~m}$
Giga-	G	$1,000,000,000$ or 10^{9}	1 gigameter $(\mathrm{Gm})=1 \times 10^{9} \mathrm{~m}$
Mega-	M	$1,000,000$, or 10^{6}	1 megameter $(\mathrm{Mm})=1 \times 10^{6} \mathrm{~m}$
Kilo-)	1,000 , or 10^{3}	1 kilometer (km) $=1 \times 10^{3} \mathrm{~m}$
Deci-	d)	$1 / 10$, 10^{-1}	1 decimeter (dm) $=0.1 \mathrm{~m}$
Centi-	c)	$1 / 100$, of 10^{-}	1 centimeter (cm) $=0.01 \mathrm{~m}$
Milli-	(m)	$1 / 1,000$, or 10^{-3}	1 millimeter $(\mathrm{mm})=0.001 \mathrm{~m}$
Micro-	(t)	$1 / 1,000,000$, or 10^{-6}	1 micrometer $(\mu \mathrm{m})=1 \times 10^{-6} \mathrm{~m}$
Nano-	O	$1 / 1,000,000,000$, or 0^{-9}	1 nanometer (nm) $=1 \times 10^{-9} \mathrm{~m}$
Pico-	P	$1 / 1,000,000,000,000$ or 10^{-12}	1 picometer $(\mathrm{pm})=1 \times 10^{-12} \mathrm{~m}$

$$
\begin{aligned}
& 2500 \mathrm{~cm} \Rightarrow \mathrm{~km} \\
& 2500 \times 10^{-2} \times 10^{-3}=0.025 \mathrm{~km} \\
& 106 \mathrm{MHz} \\
& 106 \times 10^{6} \times 10^{-3}=10600 \mathrm{kt/2} \\
& 1.06 \times 10^{5} \mathrm{kHz}
\end{aligned}
$$

Chemical Connections

 Drug Dosage and Body MassDrug dosage are prescribed on the bases of body mass and the age.
. E.g. the recommended dose of a drug may be 3 mg for each kilogram of the body weight. In this case 50 kg person will receive 150 mg of the drug.

(a) Chem 31 phys

END OF THE LECTURE

