ALDEHYDES AND KETONES

Aldehydes And Ketones

- Aldehydes and ketones are characterized by the carbonyl functional group (C=O).
- The compounds occur widely in nature as intermediates in metabolism and biosynthesis.
- They are also common as chemicals, as solvents, monomers, adhesives, agrichemicals and pharmaceuticals.

The carbonyl group :

In this and several following chapters we study the physical and chemical properties of classes of compounds containing the carbonyl group, (C=O)

- aldehydes and ketones.
- carboxylic acids.
- acid halides, acid anhydrides, esters, amides.
- enolate anions.

Structure Of Carbonyl Group

The carbonyl group consists of;

- Three σ bonds formed by the overlap of sp² hybrid orbitals.
- One π bond formed by the overlap of parallel 2p orbitals.
- The carbonyl carbon atom is sp² hybridized and forms three σ bonds and a π bond.
- The carbonyl compounds are planar about the double bond and have bond angles of approximately 120°.
- Carbon-oxygen double bonds are polarized because of the high electronegativity of oxygen relative to carbon.

ALDEHYDES

The functional group of an aldehyde is a carbonyl group bonded to a H atom (RCHO)

- in methanal, it is bonded to two H atoms (HCHO).
- in all other aldehydes it is bonded to one H and one carbon atom (RCHO).

KETONES

The functional group of a ketone is a carbonyl group bonded to two carbon atoms (R -CO -R).

Naming Aldehydes

- Aldehydes are named by replacing the terminal -e of the corresponding alkane name with -al
- The parent chain must contain the —CHO group.
- The —CHO carbon is numbered as C1.

Naming Aldehydes

For cyclic molecules in which the -CHO group is attached to the ring, the name is derived by adding the suffix -carbaldehyde to the name of the ring.

Cyclohexane carbaldehyde

2-cyclopentenecarbaldehyde

Naming Ketones

- Replace the terminal -e of the alkane name with -one.
- Parent chain is the longest one that contains the ketone group.
- Numbering begins at the end nearer the carbonyl carbon.

Ketones having common names:

Naming Ketones

- The R–C=O as a substituent is an acyl group is used with the suffix yl from the root of the carboxylic acid.
- CH₃CO: acetyl; CHO: formyl; C₆H₅CO: benzoyl
- The prefix *oxo* is used if other functional groups are present and the doubly bonded oxygen is labeled as a substituent on a parent chain.

CH₂CCH₂CH₂CH₂CH₂CH₂CH₂

Order Of Functional Groups

For compounds that contain more than one functional group indicated by a suffix.

	Suffix if Higher	Prefix if Lower
-COOH	-oic acid	
-CHO	-al	OXO-
-C=O	-one	OXO-
-OH	-0	hydroxy

Preparation Of Aldehydes And Ketones

Oxidation of primary alcohols in presence of PCC/CH₂Cl₂ give aldehydes.

 Oxidation of secondary alcohols in presence of PCC or CrO₃ or Na₂Cr₂O₇ yield Ketone.

Preparation Of Ketones

 Hydration of terminal alkynes yield methyl ketones in presence of HgSO₄.

Friedal crafts acylation of benzene yields acetophenone.

Oxidation Of Aldehydes And Ketones

Oxidizing agents

- KMnO₄/HNO₃
- CrO₃
- Ag₂O/NH₃
- Tollen's reagent.

Oxidation Of Aldehydes

Silver oxide, Ag₂O, in aqueous ammonia (Tollen's' reagent) oxidizes aldehydes to carboxylic acids.

Nucleophilic Addition Reactions Of Aldehydes And Ketones

The nucleophilic addition reaction of aldehydes and ketones, the nucleophile adds to the electrophilic carbon of the carbonyl group.

- Hydration with Water.
- Acetal formation with ROH.
- Grignard addition with RMgX.
- Imine formation with RNH₂.
- Nucleophilic addition in acidic conditions, positively charged intermediates are favored.
- Nucleophilic addition in basic conditions. negatively charged intermediates are favored.

Nucleophilic Addition Of Water : Hydration

- Aldehydes and ketones react with water to yield 1,1-diols (geminal (gem) diols).
- Hydration is reversible: a gem diol can eliminate water.

Nucleophilic Addition Of Alcohols: Acetal Formation

- Two equivalents of ROH in the presence of an acid catalyst add to C=O to yield acetals, R₂C(OR')₂
- These can be called *ketals* if derived from a ketone.

Nucleophilic Addition Of Amines: Imine Formation

 Ammonia and primary amines add to aldehydes and ketones to yield imines, R₂C=NR['].

- Imines are common intermediates in biological pathways.
- Imine gets further reduced in presence of enzymes.

Nucleophilic Addition Of Grignard Reagent: Alcohol Formation

The reaction of aldehydes and ketones with Grignard reagent yields alcohols.

Nucleophilic Addition Of Grignard Reagent: Alcohol Formation **Examples**

Cycloheaxanone

1-Ethylcyclohexanol

Conjugate (1,4) Nucleophilic Addition Reaction

 α,β – Unsaturated aldehydes /ketones on nuclepphilic addition , the initial product formed is a resonance stabilized enolate ion, which undergoes protonation on the α -carbon to form a saturated aldehyde/ ketones.

Hydride Addition

- Convert C=O to CH-OH
- LiAlH₄ and NaBH₄ react as donors of hydride ion.
- Protonation after addition yields the alcohol.

Practice Problems

