



Hein \* Pattison \* Arena \* Best \*

19.1 Organic Chemistry: History and Scope

- 19.2 The Carbon Atom: Bonding and Shape
- 19.3 Organic Formulas and Molecular Models
- 19.4 Classifying Organic Compounds
- 19.5 Hydrocarbons
- 19.6 Saturated Hydrocarbons: Alkanes
- 19.7 Carbon Bonding in Alkanes

19.8 Isomerism

- 19.9 Naming Organic Compounds
- 19.10 Introduction to the Reactions of Carbon
- 19.11 Reactions of Alkanes
- 19.12 Sources of Alkanes
- 19.13 Gasoline: A Major Petroleum Product
- 19.14 Cycloalkanes





## What is organic chemistry?

Organic chemistry is the study of compounds containing carbon. These compounds occur naturally but can be prepared in a laboratory.

The early history of organic chemistry included vital force theory (*i.e. that organic compounds exist only in living organisms*). The German chemist Wöhler disproved this theory in 1828 with the lab synthesis of urea.

The formula for urea is MHZ $H_2N-C-NH_2$ 

### What is organic chemistry?

Carbon can form a vast array of long chain and ring containing compounds because carbon has the unique ability to bond to itself.

Organic compounds include drugs, fuels, toiletries, plastics, and fabrics. You can see why organic chemistry is such an important field of study.

Lipstick is made of organic molecules. Cosmetics and perfumes contain organic compounds.







- Ć -C= -[= - C-

## Bonding in Carbon Compounds

Carbon can form saturated compounds (*i.e. all carbon atoms have four single bonds*) or unsaturated compounds (*i.e. at least one carbon has a double bond* (C=C) or a triple bond (C=C)).



Eth<u>ane</u> is a saturated hydrocarbon because it has all single bonds.



Eth<u>ene</u> is an unsaturated hydrocarbon because it has a double bond.

Molecular Shapes of Carbon Compounds Predicted by the VSEPR Bonding Theory



#### Bond Angle and Shape of Methane



Figure 19.1 Tetrahedral structure of carbon: (a) a regular tetrahedron; (b) a carbon atom with tetrahedral bonds; (c) a carbon atom within a regular tetrahedron; (d) a methane molecule,  $CH_4$ 

## 19.3 Organic Formulas and Molecular Models



CH3-CHZCHZ-CHZCHZ H L (712 -

#### Formulas and Molecular Models



**Figure 19.3** Types of formulas and models used to represent organic molecules. Each diagram is a representation of a propane molecule.





This is an example of how to change a condensed formula into a line structure.



The tables in the next two slides summarize formulas and models used in organic chemistry.

Formula or model

Definition



|             | Table 19.1           | Table 19.1 Classes of Organic Compounds |                                      |                      |                                                 |                                             |        |  |  |  |  |  |
|-------------|----------------------|-----------------------------------------|--------------------------------------|----------------------|-------------------------------------------------|---------------------------------------------|--------|--|--|--|--|--|
|             | Class of<br>compound | General<br>formula*                     | IUPAC<br>name**, ***                 | Molecular<br>formula | Condensed<br>structural formula                 | Structural<br>formula                       | CLi>   |  |  |  |  |  |
| ¢.          | Alkane               | RH                                      | Ethane<br>(Ethane)                   | $C_2H_8$             | СН,СН,                                          | H H<br>H-L-L-H<br>H-L-H<br>H H              | CHE CH |  |  |  |  |  |
| 4           | Alkene               | R-CH=CH <sub>2</sub>                    | Ethene<br>(Ethylene)                 | $C_2H_4$             | H2C=CH2                                         | H C C H                                     | CH3    |  |  |  |  |  |
|             | Alkyne               | R−C=C−H                                 | Ethyne<br>(Acetylene)                | $C_2H_2$             | HC=CH                                           | H— <b>С=С</b> −Н                            |        |  |  |  |  |  |
| FCI, Br, [] | Alkyl halide         | RX                                      | Chloroethane<br>(Ethyl chloride)     | С2Н,СІ               | CH3CH2CI                                        |                                             |        |  |  |  |  |  |
|             | Alcohol              | ROH                                     | Ethanol<br>(Ethyl alcohol)           | C₂H₄O                | CH3CH2OH                                        | н н<br>н—С <mark>—С—Он</mark><br>і і<br>н н |        |  |  |  |  |  |
|             | Ether                | R—O—R                                   | Methoxymethane<br>(Dimethyl ether)   | C₂H₄O                | СН,0СН,                                         | H<br>H-C-O-C-H<br>H<br>H                    |        |  |  |  |  |  |
|             | Aldehyde             | R−C=0<br>I<br>H                         | Ethan <i>al</i><br>(Acetaldehyde)    | C₂H₄O                | Сн,сно                                          | н<br>н—С—С—н<br>н 0                         |        |  |  |  |  |  |
|             | Ketone               | R−C−R<br>∥<br>O                         | Propanone<br>(Dimethyl<br>ketone)    | C₃H₅O                | сн,сосн,                                        |                                             |        |  |  |  |  |  |
|             | Carboxylic<br>acid   | R—C—OH<br>↓<br>O                        | Ethanoic acid<br>(Acetic acid)       | $C_2H_4O_2$          | СН₁СООН                                         | н-с-с-он<br>н о                             |        |  |  |  |  |  |
|             | Ester                | R—C—OR<br>↓<br>O                        | Methyl ethanoste<br>(Methyl acetate) | C₃H₄O₂               | сн,соосн,                                       | н н<br>                                     |        |  |  |  |  |  |
| <pre></pre> | Amide                | R−C−NH₂<br>∥<br>O                       | Ethanamide<br>(Acetamide)            | C2H3ON               | CH,CONH2                                        |                                             |        |  |  |  |  |  |
|             | Amine                | R-CH <sub>2</sub> -NH <sub>2</sub>      | Aminoethane<br>(Ethylamine)          | C2H2N                | CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub> | H H<br>   <br>H—C—C—N—H<br>     <br>H H H   |        |  |  |  |  |  |

\* The letter R is used to indicate any of the many possible alkyl groups. \*\* Class name ending in italic. \*\*\* Common name in parentheses.



# 19.4 Classifying Organic Compounds







| Table 19.1 Classes of Organic Compounds |                      |                                    |                                      |                               |                                   |                                           |  |  |  |
|-----------------------------------------|----------------------|------------------------------------|--------------------------------------|-------------------------------|-----------------------------------|-------------------------------------------|--|--|--|
| Organic compounds                       | Class of<br>compound | General<br>formula*                | IUPAC<br>name**, ***                 | Molecular<br>formula          | Condensed<br>structural formula   | Structural<br>formula                     |  |  |  |
| are organized by                        | Alkane               | RH                                 | Ethane<br>(Ethane)                   | C <sub>2</sub> H <sub>6</sub> | сн,сн,                            |                                           |  |  |  |
| functional groups                       | Alkene               | R-CH=CH <sub>2</sub>               | Ethene<br>(Ethylene)                 | C2H4                          | H2C=CH2                           |                                           |  |  |  |
| into classes as $\mathcal{L}$           | Alkyne               | R—C <b>=</b> C—H                   | Ethywe<br>(Acetylene)                | $C_2H_2$                      | НС=СН                             | н— <mark>с=с</mark> —н<br>н н             |  |  |  |
| shown in Table                          | Alkyl halide         | X                                  | Chloroethane<br>(Ethyl chloride)     | C₂H₃Ci                        | CH,CH2CI                          | H-C-C-CI<br>H H                           |  |  |  |
| 19.1.                                   | Alcohol              | ROH                                | Ethanol<br>(Ethyl alcohol)           | C₂H₄O                         | Сн,сн <sub>2</sub> он             | н н<br>н—с— <b>с</b> —он<br>і і           |  |  |  |
| E                                       | Ether                | ) R—O—R                            | Methoxymethane<br>(Dimethyl ether)   | C₂H₄O                         | сн,осн,                           |                                           |  |  |  |
|                                         | Aldehyde             | R—C=O<br>H                         | Ethan <i>al</i><br>(Acetaldehyde)    | C₂H₄O                         | сн,сно                            |                                           |  |  |  |
|                                         | Ketone               | R—C—R<br>U                         | Propanone<br>(Dimethyl<br>ketone)    | C₃H₄O                         | сн,сосн,                          |                                           |  |  |  |
| - HILL                                  | Carboxylic<br>acid   | R—C—OH<br>↓<br>O                   | Ethanoic acid<br>(Acetic acid)       | $C_2H_4O_2$                   | СН,СООН                           | н_с_с <u>он</u><br>н_б                    |  |  |  |
|                                         | Ester                | R—C—OR<br>↓<br>○                   | Methyl ethanoute<br>(Methyl acetate) | $C_3H_6O_2$                   | сн,соосн,                         |                                           |  |  |  |
|                                         | Amide                | R—C—NH <sub>2</sub><br>O           | Ethanamide<br>(Acetamide)            | C₂H₅ON                        | CH <sub>3</sub> CONH <sub>2</sub> | H = C = C = N = H                         |  |  |  |
|                                         | Amine                | R-CH <sub>2</sub> -NH <sub>2</sub> | Aminoethane<br>(Ethylamine)          | C2H,N                         | CH3CH2NH2                         | H H<br>   <br>H-C-C-N-H<br>     <br>H H H |  |  |  |

\* The letter R is used to indicate any of the many possible alkyl groups. \*\* Class name ending in italic. \*\*\* Common name in parentheses.

