Chapter #4

Electric current & circuits

We will discuss:-

- Electric charges.
- The flow of charges.
- How charges interact.
- Electricity , circuit, current ,electricity, repulsion and attraction.
- Capacitance.
- Medical use of capacitors.
- Potential difference (voltage)
- Power
- Conventional current direction.
- Resistance.
- Ohm's law.
- Series and parallel circuits.
- Capacitors in series and parallel.

Electric charges.

• The atom is made up of three main parts:-

Protons, neutrons and electrons.

The flow of charges.

- Electrons : The subatomic particle which can move from one object to another.
- The object will be Negatively charged when we add electrons to the object.
- The object will be **positively** charged when we **remove** electrons from the object.

• When two objects with <u>same</u> charge come into contact they will <u>repel</u>.

When two objects with <u>different</u> charges come into contact they will <u>attract.</u>

How charges interact?

Coulomb's Law – Gives the electric force between two point charges. $F = k \frac{q_1 q_2}{r^2} \frac{Inverse Square}{Law}$ $k = Coulomb's Constant = 9.0x10^9 \text{ Nm}^2/\text{C}^2$ $q_1 = \text{Point charge -1}$ $q_2 = \text{Point charge - 2}$ r = the distance between the two charges

Definition.

- Electricity : a form of energy .
- Circuit: a continuous path through which electrons can flow.
- Current electricity: the study of charge that move
- Repulsion : is the movement away from each other.
- Attraction: is the movement towards each other.
- Static electricity : is the study of charges that do not move.

Capacitance.

- Capacitor: electric device for storing charge.
- The symbol of charge (Q), it measured in units called coulombs (C).
- The charge can be positive or negative .

Capacitance.

CAPACITANCE

CAPACITANCE IS A FUNDAMENTAL ELECTRICAL PROPERTY THAT MEASURES THE ABILITY OF A CAPACITOR TO STORE ELECTRICAL CHARGE. IT IS DENOTED BY THE SYMBOL "C" AND IS MEASURED IN UNITS CALLED FARADS (F).

The medical use of capacitors

- A defibrillator machine is a medical device that uses a single very large capacitor
- This machine gives a patient an electric shock across his heart.
- The shock stops the heart beating erratically (fibrillation)

What is fibrillation?

• Atrial fibrillation (also called AFib or AF) is an irregular heartbeat (arrhythmia) that can lead to blood clots, stroke, heart failure and other heart-related complications.

What is atrial fibrillation	
Normal	Atrial
Sinus node	Sinus node
	MedicalNewsToday

What is fibrillation?

What Is AFib?

In atrial fibrillation, the normal, steady electrical activity of the heartbeat is replaced by the rapid, irregular electrical signals of AFib.

Defibrillation

- <u>Defibrillation</u>: is the process in which an electronic device sends an electric shock to the heart to stop an extremely rapid, irregular heartbeat and restore the normal heart rhythm.
- Defibrillators can also restore the heart's beating if the heart suddenly stops.
- Defibrillators help to stop fibrillation.

Electric current.

- Electric current : is a flow of charged particles.
- Symbol : I
- The SI unit of electric current is ampere (A)

• Formula :
$$I = \frac{q}{t}$$
 = Coulomb / sec=C/s= 1 amp

• Where q is the charge , t is the time

Example 1

• if a current of 80mA exists in a metal wire , how many electrons flow past a given cross-section of the wire in 10 minutes ?

Potential difference (Voltage)

- When a point charge q moves from point A to point B, it moves through a potential difference
- The potential difference is the change in electric potential energy per unit charge.
- Voltage describes the "pressure" that pushes electricity. The amount of voltage is indicated by a unit known as the volt (V), and higher voltages cause more electricity to flow to an electronic device. However, electronic devices are designed to operate at specific voltages; excessive voltage can damage their circuitry.

Potential difference (Voltage)

 Electricity flows as a current. You can imagine it as a flow of water, like in a river. The water in rivers flows from mountains upstream to the ocean downstream. In other words, water flows from places with a high water height to places with a low water height. Electricity acts similarly: the concept of water height is analogous to electric potential, and electricity flows from places with high electric potential to places with low electric potential.

Potential difference (Voltage)

- Formula : $V = \frac{W}{Q}$ =joules/coulomb =volts
- Batteries
- Outlets
- EKG : records the electrical signal from the heart to check for different heart conditions
- Equipotential lines: points at same potential.

Part of circuits

- Energy Source :circuit needs an energy source to push a charge through the circuit.
- Load : a device in a circuit that operates using electrical energy.

Electric Circuits

Conventional current direction and electrons flow direction

Electrical resistance

- <u>Resistance</u> is a measure of the opposition to current flow in an electrical circuit.
- Resistance is measured in ohms Ω .
- The symbol of resistance (R).

- Long wire has a higher resistance.
- The ratio of voltage to current is called resistance

like the ru through a p and geomet	esistance to flow of water lipe, depends on the <u>size</u> try of the wire :
⇒0	
-	a large cross-section permits current to flow more easily + R & trea
	0
	a long wire presents more resistance than a short one
	-> R = length

Ohm`s law

• Example 2:

calculate the current if the voltage v=24 volts and R=8 Ω ?

electric circuits

• Electric circuits: path for transmitting electric current .

• We will study two types of electric circuits , Series and parallel circuits.

- A series circuit is defined as the circuit in which a number of resistances are connected one after the other.
- In a series circuit, the flow of current follows a single path.

Series Circuit:

Circuit in which a current flows through each component, one after another. There is only one path for the current to follow.

• What is the formula for resistance in series ? • $R_{eq} = R_1 + R_2 + R_3$

- The current in a series circuit goes through every component in the circuit. Therefore, all of the components in a series connection carry the same current. A series circuit has only one path through which its current can flow.
- The voltages In a series circuit, the sum of the voltages across components is equal to the supply voltage.

• Example 3 :

In the circuit shown in the figure, two resistors R_1 and R_2 have been connected in series

Find : R_{eq} , I, V_1 , V_2 , ?

• Example 4 :

In the circuit shown in the figure, which resistor will take more voltage

Parallel circuits

• Parallel circuit, an electrical path that branches so that the current divides and only part of it flows through any branch.

Parallel circuits

• What is the formula for the resistance in parallel ?

- The current in a parallel circuit splits into different branches then combines again before it goes back into the supply.
- Voltage is the same across each component of the parallel circuit.

Parallel circuits

• Example 5 :

In the circuit shown in the figure, two resistors R_1 and R_2 have been connected in parallel ?

```
Find:R_{eq}, V_1, V_2, I_1, I_2, I_{eq}
```


summary

Series Resistors

Current is the same across each resistor. Voltage is divided.

 $R_{Equivalent} = R_1 + R_2 + \dots + R_{N-1} + R_N$

Parallel Resistors

Voltage is the same across each resistor. Current is divided.

summary

Example 6

• Find power P?, if resistance $R = 50\Omega$

V=220 v ?

Capacitors

- A <u>capacitor</u> is a two-terminal electrical device that can store energy in the form of an electric charge.
- Capacitors may be connected in series or in parallel to obtain a resultant value which may be either the sum of the individual values (in parallel) or a value less than that of the smallest capacitance (in series).

Capacitor in series

Capacitors in Series:

v

C₁

Capacitor in series

- Example 7:
- What is the total capacitance for the circuit presented below ?

Capacitor in parallel

Capacitors in Parallel:

$$C_{eq} = C_1 + C_2.$$

Capacitor in parallel

- Example 8:
- What is the total capacitance for the circuit presented below ?

• if
$$C_1 = 20\mu F$$
, $C_2 = 50\mu F$

 $C_{23} = C_2 + C_3$ = 24 μ F

 C_2

 C_3

combination circuit

Question 2

Calculate the total current (I) generated by the battery in the circuit given below.

ANS

I = 0.02A

Question 4

1.

In the circuit given below which of the resistors would draw maximum potential drop(V)?

2. Where you would connect the voltmeter to measure the total voltage? $$R_1$$

