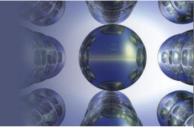


Chapter 2

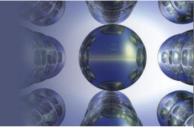
Atoms, Molecules, and lons


Section 2.1 The Early History of Chemistry

Early History of Chemistry

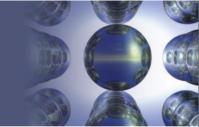
- Greeks were the first to attempt to explain why chemical changes occur.
- Alchemy dominated for 2000 years.
 - Several elements discovered.
 - Mineral acids prepared.
- Robert Boyle was the first "chemist".
 - Performed quantitative experiments.
 - Developed first experimental definition of an element.

Section 2.2 Fundamental Chemical Laws

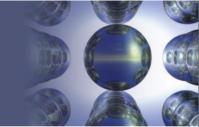


Three Important Laws

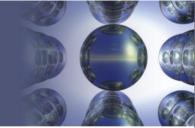
- Law of conservation of mass (Lavoisier):
 - Mass is neither created nor destroyed in a chemical reaction.


- Law of definite proportion (Proust):
 - A given compound always contains exactly the same proportion of elements by mass.

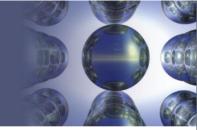
Section 2.2 Fundamental Chemical Laws


Three Important Laws (continued)

- Law of multiple proportions (Dalton):
 - When two elements form a series of compounds, the ratios of the masses of the second element that combine with 1 gram of the first element can always be reduced to small whole numbers.


Dalton's Atomic Theory (1808)

Each element is made up of tiny particles called atoms.


Dalton's Atomic Theory (continued)

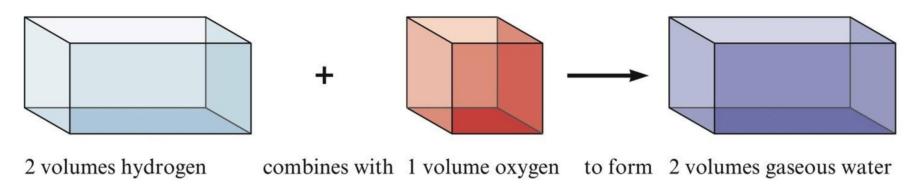
The atoms of a given element are identical; the atoms
of different elements are different in some fundamental
way or ways.

Dalton's Atomic Theory (continued)

 Chemical compounds are formed when atoms of different elements combine with each other. A given compound always has the same relative numbers and types of atoms.

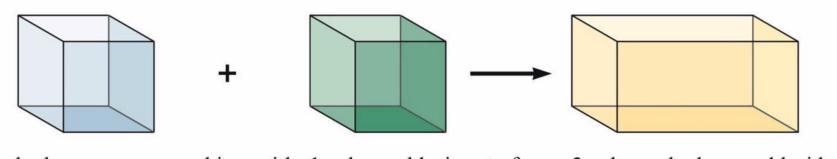
Dalton's Atomic Theory (continued)

- Chemical reactions involve reorganization of the atoms—changes in the way they are bound together.
- The atoms themselves are not changed in a chemical reaction.



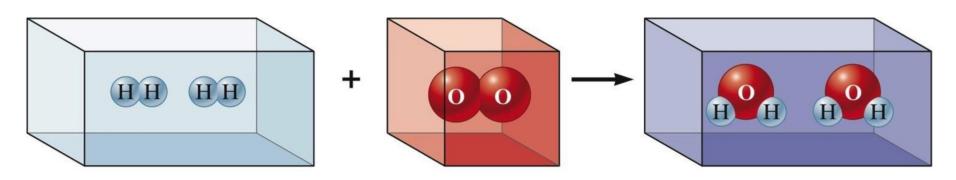
Gay-Lussac and Avogadro (1809—1811)

- Gay—Lussac
 - Measured (under same conditions of T and P) the volumes of gases that reacted with each other.
- Avogadro's Hypothesis
 - At the same T and P, equal volumes of different gases contain the same number of particles.
 - Volume of a gas is determined by the number, not the size, of molecules.


Representing Gay—Lussac's Results

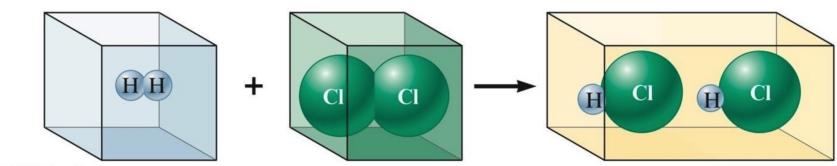
© Cengage Learning. All Rights Reserved.

Representing Gay—Lussac's Results



1 volume hydrogen

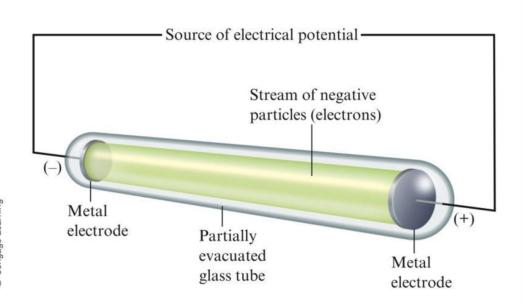
combines with 1 volume chlorine to form 2 volumes hydrogen chloride

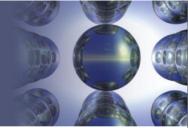

Representing Gay—Lussac's Results

© Cengage Learning. All Rights Reserved.

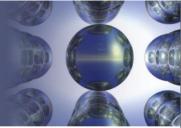
Representing Gay—Lussac's Results

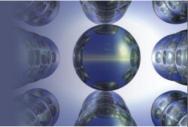
© Cengage Learning. All Rights Reserved.


J. J. Thomson (1898—1903)

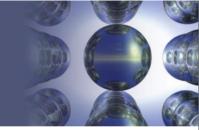

- Postulated the existence of negatively charged particles, that we now call electrons, using cathode-ray tubes.
- Determined the charge-to-mass ratio of an electron.
- The atom must also contain positive particles that balance exactly the negative charge carried by electrons.

Cathode-Ray Tube

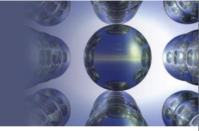

© Cengage Learning. All Rights Reserved.


Robert Millikan (1909)

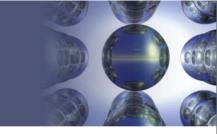
- Performed experiments involving charged oil drops.
- Determined the magnitude of the charge on a single electron.
- Calculated the mass of the electron
 - $(9.11 \times 10^{-31} \text{ kg}).$

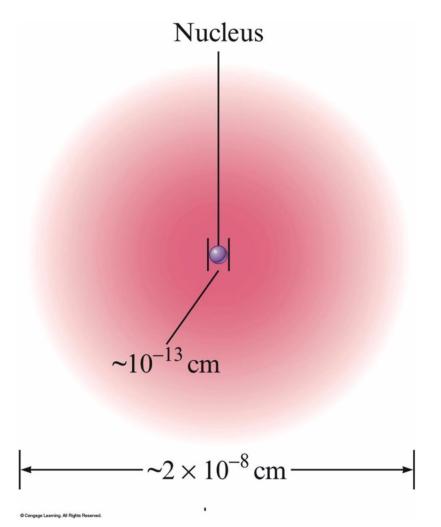

Henri Becquerel (1896)

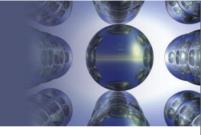
- Discovered radioactivity by observing the spontaneous emission of radiation by uranium.
- Three types of radioactive emission exist:
 - Gamma rays (Υ) high energy light
 - Beta particles (β) a high speed electron
 - Alpha particles (α) a particle with a 2+ charge



Ernest Rutherford (1911)

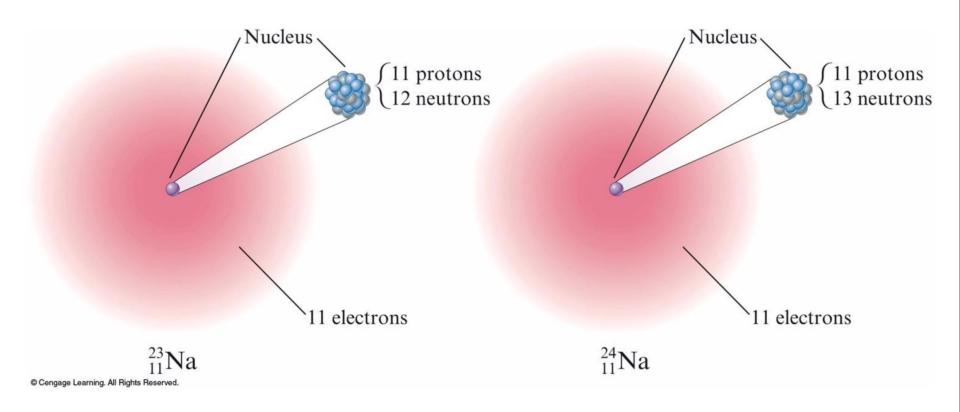

- Explained the nuclear atom.
- The atom has a dense center of positive charge called the nucleus.
- Electrons travel around the nucleus at a large distance relative to the nucleus.


- The atom contains:
 - Electrons found outside the nucleus; negatively charged.
 - Protons found in the nucleus; positive charge equal in magnitude to the electron's negative charge.
 - Neutrons found in the nucleus; no charge; virtually same mass as a proton.

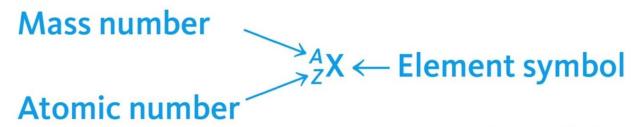


- The nucleus is:
 - Small compared with the overall size of the atom.
 - Extremely dense; accounts for almost all of the atom's mass.

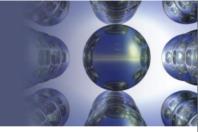
Nuclear Atom Viewed in Cross Section



Isotopes


- Atoms with the same number of protons but different numbers of neutrons.
- Show almost identical chemical properties; chemistry of atom is due to its electrons.
- In nature most elements contain mixtures of isotopes.

Two Isotopes of Sodium

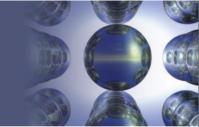


- Isotopes are identified by:
 - Atomic Number (Z) number of protons
 - Mass Number (A) number of protons plus number of neutrons

© Cengage Learning. All Rights Reserved.

EXERCISE!

A certain isotope X contains 23 protons and 28 neutrons.

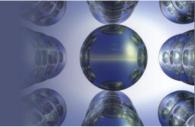

- What is the mass number of this isotope?
- Identify the element.

Mass Number = 51 Vanadium

Chemical Bonds

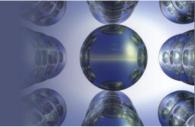
- Covalent Bonds
 - Bonds form between atoms by sharing electrons.
 - Resulting collection of atoms is called a molecule.

Chemical Bonds


- Ionic Bonds
 - Bonds form due to force of attraction between oppositely charged ions.
 - lon atom or group of atoms that has a net positive or negative charge.
 - Cation positive ion; lost electron(s).
 - Anion negative ion; gained electron(s).

EXERCISE!

A certain isotope X⁺ contains 54 electrons and 78 neutrons.


What is the mass number of this isotope?

CONCEPT CHECK!

Which of the following statements regarding Dalton's atomic theory are still believed to be true?

- Elements are made of tiny particles called atoms.
- II. All atoms of a given element are identical.
- III. A given compound always has the same relative numbers and types of atoms.
- IV. Atoms are indestructible.

CONCEPT CHECK!

Which of the following statements regarding Dalton's atomic theory are still believed to be true?

- I. Elements are made of tiny particles called atoms.
- II. All atoms of a given element are identical.
- III. A given compound always has the same relative numbers and types of atoms.
- IV. Atoms are indestructible.

Section 2.7 An Introduction to the Periodic Table


The Periodic Table

- Metals vs. Nonmetals
- Groups or Families elements in the same vertical columns; have similar chemical properties
- Periods horizontal rows of elements

Section 2.7 An Introduction to the Periodic Table

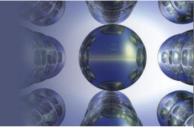
The Periodic Table

Section 2.7 An Introduction to the Periodic Table

Groups or Families

 Table of common charges formed when creating ionic compounds.

Group or Family	Charge	
Alkali Metals (1A)	1+	
Alkaline Earth Metals (2A)	2+	
Halogens (7A)	1—	
Noble Gases (8A)	0	

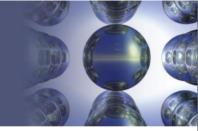

Section 2.8 Naming Simple Compounds

Naming Compounds

- Binary Compounds
 - Composed of two elements
 - Ionic and covalent compounds included
- Binary Ionic Compounds
 - Metal—nonmetal
- Binary Covalent Compounds
 - Nonmetal—nonmetal

Section 2.8 Naming Simple Compounds

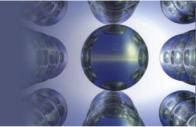
Binary Ionic Compounds (Type I)


- 1. The cation is always named first and the anion second.
- 2. A monatomic cation takes its name from the name of the parent element.
- 3. A monatomic anion is named by taking the root of the element name and adding –*ide*.

Section 2.8 Naming Simple Compounds

Table- Common Monatomic Cations and Anions

Cation	Name	Anion	Name
H ⁺	Hydrogen	H-	Hydride
Li ⁺	Lithium	F-	Fluoride
Na ⁺	Sodium	CI-	Chloride
K ⁺	Potassium	Br ⁻	Bromide
Cs ⁺	Cesium	I-	Iodide
Be ²⁺	Beryllium	O ²⁻	Oxide
Mg ²⁺ Ca ²⁺	Magnesium	S ²⁻	Sulfide
Ca ²⁺	Calcium	N_{3-}	Nitride
Ba ²⁺	Barium	P3-	Phosphide
Al ³⁺	Aluminum		


Binary Ionic Compounds (Type I)

Examples:

KCl Potassium chloride

MgBr₂ Magnesium bromide

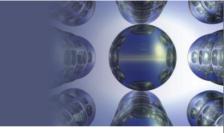
CaO Calcium oxide

Binary Ionic Compounds (Type II)

- Metals in these compounds form more than one type of positive ion.
- Charge on the metal ion must be specified.
- Roman numeral indicates the charge of the metal cation.
- Transition metal cations usually require a Roman numeral.
- Elements that form only one cation do not need to be identified by a roman numeral.

Binary Ionic Compounds (Type II)

Examples:


CuBr Copper(I) bromide

FeS Iron(II) sulfide

PbO₂ Lead(IV) oxide

Table- Common Type II Cations

Systematic Name
Iron(III)
Iron(II)
Copper(II)
Copper(I)
Cobalt(III)
Cobalt(II)
Tin(IV)
Tin(II)
Lead(IV)
Lead(II)
Mercury(II)
Mercury(I)
Silver [†]
Zinc [†]
Cadmium†

Common monatomic anions

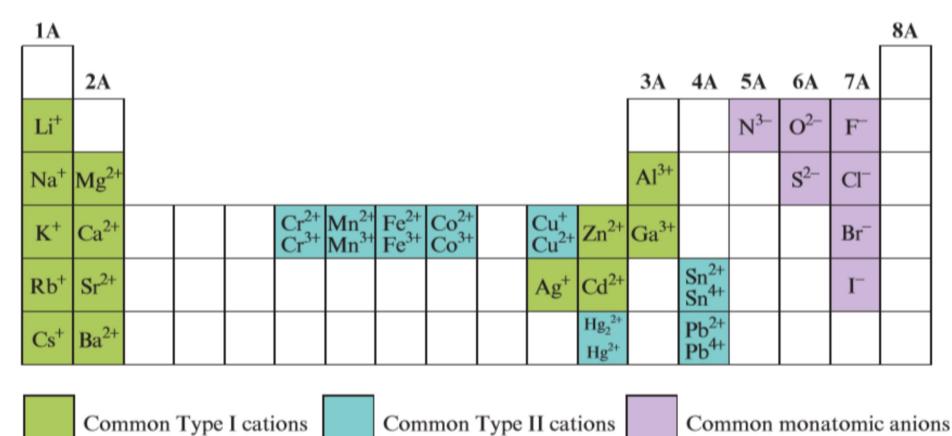
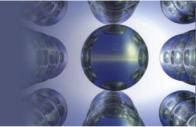


Figure- The common cations and anions.

Polyatomic Ions

- Must be memorized (see Table 2.5 on pg. 65 in text).
- Examples of compounds containing polyatomic ions:

NaOH Sodium hydroxide


 $Mg(NO_3)_2$ Magnesium nitrate

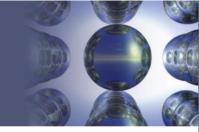
 $(NH_4)_2SO_4$ Ammonium sulfate

Polyatomic Ions

lon	Name	lon	Name
Hg ₂ ²⁺	Mercury(I)	NCS ⁻ or SCN ⁻	Thiocyanate
NH ₄ +	Ammonium	CO_3^{2-}	Carbonate
NO ₂ -	Nitrite	HCO ₃ -	Hydrogen carbonate
NO ₃ ⁻	Nitrate		(bicarbonate is a widely
SO ₃ ²⁻	Sulfite		used common name)
SO ₄ ²⁻	Sulfate	CIO- or OCI-	Hypochlorite
HSO₄ [−]	Hydrogen sulfate	CIO ₂ -	Chlorite
	(bisulfate is a widely	CIO ₃ -	Chlorate
	used common name)	CIO_4^-	Perchlorate
OH-	Hydroxide	$C_2H_3O_2^-$	Acetate
CN-	Cyanide	MnO_4^-	Permanganate
PO ₄ 3-	Phosphate	$Cr_2O_7^{2-}$	Dichromate
HPO ₄ ²⁻	Hydrogen phosphate	CrO_4^{2-}	Chromate
H ₂ PO ₄ ⁻	Dihydrogen phosphate	O_2^{2-}	Peroxide
		$C_2O_4^{2-}$	Oxalate
		$S_2O_3^{2-}$	Thiosulfate

Binary Covalent Compounds (Type III)

- Formed between two nonmetals.
- 1. The first element in the formula is named first, using the full element name.
- 2. The second element is named as if it were an anion.
- 3. Prefixes are used to denote the numbers of atoms present.
- 4. The prefix *mono* is never used for naming the first element.



Prefixes Used to Indicate Number in Chemical Names

Table 2.6 | Prefixes Used to Indicate Number in Chemical Names

Prefix	Number Indicated
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Cengage Learning. All Rights Reserved.

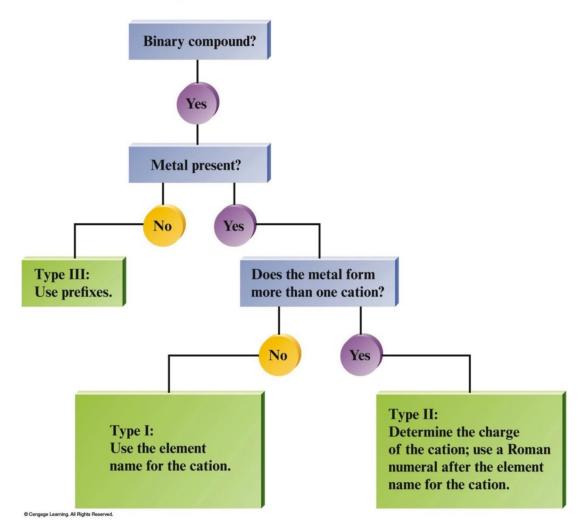
Binary Covalent Compounds (Type III)

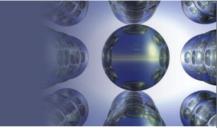
Examples:

 CO_2

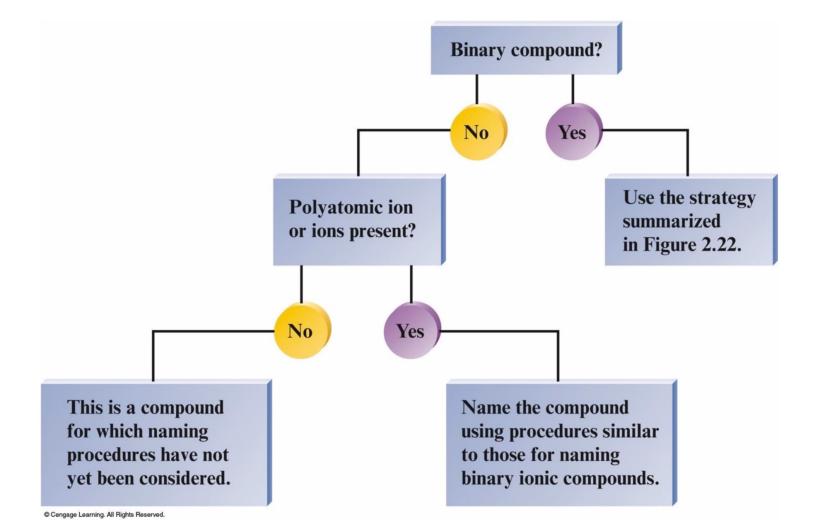
Carbon dioxide

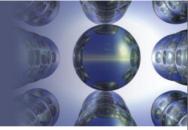
SF₆


Sulfur hexafluoride


 N_2O_4

Dinitrogen tetroxide




Flowchart for Naming Binary Compounds

Overall Strategy for Naming Chemical Compounds

Acids

- Acids can be recognized by the hydrogen that appears first in the formula—HCl.
- Molecule with one or more H⁺ ions attached to an anion.

Acids

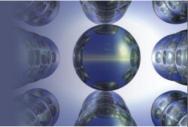
If the anion does not contain oxygen, the acid is named with the prefix hydro—and the suffix -ic.

Examples:

HCl Hydrochloric acid

HCN Hydrocyanic acid

H₂S Hydrosulfuric acid


Acids

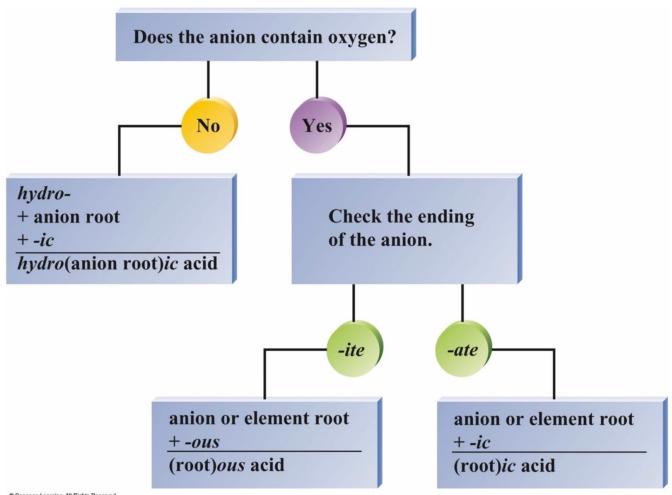
- If the anion does contain oxygen:
 - The suffix —ic is added to the root name if the anion name ends in —ate.
- Examples:

HNO₃ Nitric acid

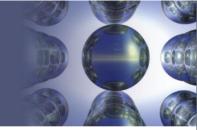
H₂SO₄ Sulfuric acid

 $HC_2H_3O_2$ Acetic acid

Acids


- If the anion does contain oxygen:
 - The suffix -ous is added to the root name if the anion name ends in -ite.
- Examples:

HNO₂ Nitrous acid


H₂SO₃ Sulfurous acid

HClO₂ Chlorous acid

Flowchart for Naming Acids

Cengage Learning. All Rights Reserved.

EXERCISE!

Which of the following compounds is named incorrectly?

a) KNO ₃	potassium nitrate	
b) TiO ₂	titanium(II) oxide	
c) Sn(OH) ₄	tin(IV) hydroxide	
d) PBr ₅	phosphorus pentabromide	
e) CaCrO ₄	calcium chromate	