

Physics L3

Wiam Al Drees

Al-imam Muhammad Ibn Saud Islamic University

What are we going to talk about today?

Ch 2 : Motion in Two Dimension

- 2.1 An Introduction to vectors:
- Vectors and Scalars
- Drawing vectors
- Multiplying vector by scalar
- Addition and subtraction of vectors
- The components of a vector
- Vector Addition by Components

Physical quantities

SCALAR

VECTOR

- A SCALAR is any quantity in physics that has MAGNITUDE, but NOT a direction associated with it.
- Magnitude : A numerical value with units

- For example: Temperature (5 Kelvin) is a scaler quantity.

1.2 An introduction to vectors: Vector quantities
- A VECTOR is ANY quantity in physics that has BOTH MAGNITUDE and DIRECTION.
- For example: Displacement ($\mathbf{3} \mathbf{m}, \mathbf{N}$). Velocity ($100 \mathrm{~m} / \mathrm{s}$, WS). Force ($50 \mathrm{~N}, \mathrm{~W}$).

- Vectors are typically illustrated by drawing an ARROW above the symbol, e.g. :

$$
\vec{v}, \vec{x}, \vec{a}, \vec{F}
$$

1.2 An introduction to vectors: Drawing vectors

A vector quantity represented by an arrow. The length of the vector represents the magnitude and the arrow indicates the direction of the vector.

The point A is often called the "tail" of the vector, and B is called the vector's "head".

Magnitude: The magnitude of a vector is the length of the vector, it is a numerical value with units, the magnitude of a vector \vec{b} is written as b or $|\vec{b}|$

1.2 An introduction to vectors: Drawing vectors (Direction)

Direction: Expressed as an angle measured clockwise from the positive \mathbf{x}-axis

$$
\vec{g}, \gamma=230^{\circ}
$$

$$
\vec{o}, \lambda=330^{\circ}
$$

1.2 An introduction to vectors: Drawing vectors (Direction)

Blue : $\vec{b}, \phi_{1}=30^{\circ}$

Purple: $\overrightarrow{\boldsymbol{p}}, \boldsymbol{\phi}_{2}=30^{\circ}$

Orange: $\overrightarrow{0}, \boldsymbol{\phi}_{3}=210^{\circ} \quad$ Green: $\overrightarrow{\boldsymbol{g}}, \boldsymbol{\phi}_{4}=\mathbf{3 0}{ }^{\circ}$

Blue and purple vectors have same magnitude and direction so they are equal. $(\vec{b}=\vec{p})$

Blue and orange vectors have same magnitude but different direction. $(\vec{b}=-\vec{o})$

Blue and green vectors have same direction but different magnitude.

Two vectors are equal if they have the same direction and magnitude.
1.2 An introduction to vectors: Drawing vectors (Magnitude)

A unit vector

Has magnitude 1
Has a particular direction
Lacks both dimension and unit
Is labeled with a hat $(\wedge): \widehat{x}, \widehat{y}$ and \hat{z}

Where:

\widehat{x} a vector of length one in the $+x$ direction \hat{y} a vector of length one in the $+y$ direction \hat{z} a vector of length one in the $+z$ direction

The unit vectors point along axes.

1.2 An introduction to vectors: Multiplying vector by scalar

- Multiplying a vector by m , increases its magnitude by a factor of m, but does not change its direction.
- Multiplying a vector by (-m), increases its magnitude by a factor of m and the direction changes to the opposite direction.

- e.g. $\mathbf{m}=3$

1.2 Addition and subtraction of vectors: (Graphical method)

Addition vectors: The vector sum of two vectors in a plane is obtained by placing the tail of the second vector at the head of the first vector The resultant vector $\overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{b}}$ is the vector drawn from the tail of $\overrightarrow{\boldsymbol{a}}$ to tip of $\overrightarrow{\boldsymbol{b}}$.

$$
\overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{b}}+\overrightarrow{\boldsymbol{a}} \quad \text { (commutative law) }
$$

1.2 Addition and subtraction of vectors: (Graphical method)
subtraction vectors: To subtract a vector \vec{a} from a vector \vec{b} reverse the direction $\overrightarrow{\boldsymbol{b}}$ of and then add the reversed $\overrightarrow{\boldsymbol{b}}$ to $\overrightarrow{\boldsymbol{a}}$

$$
\overrightarrow{\boldsymbol{R}}=\vec{a}+(-\overrightarrow{\boldsymbol{b}})
$$

Not that :

$$
\vec{a}+(-\vec{b}) \neq \vec{b}+(-\vec{a})
$$

1.2 Addition and subtraction of vectors: (Graphical method)

Ex1: Using the graphical method find the following : (Find the resultant)

$$
\vec{R}_{1}=\vec{a}+\vec{a}=2 \vec{a} \quad \vec{R}_{2}=\vec{a}+(-\vec{a})=0
$$

1.2 Addition and subtraction of vectors: (Graphical method)

Ex2: Using the graphical method find the following : (Find the resultant)

$$
\vec{R}_{2}=\vec{a}+(-\vec{b})
$$

1.2 Addition and subtraction of vectors: (Graphical method)

Ex3: Using the graphical method find the following : (Find the resultant)

$$
\vec{R}_{1}=\vec{a}+\vec{b}+\vec{c} \quad \vec{R}_{2}=\vec{a}+(-\vec{b})+\vec{c}
$$

1.2 An introduction to vectors

Checkpoint 1:

If a vector $\vec{A}=4 \widehat{x}-5 \hat{y}$ and $\vec{B}=4 \widehat{x}+5 \widehat{y}$, then $\vec{A}-\vec{B}=\ldots$
(a) $0 \widehat{x}-10 \widehat{y}$
(b) $8 \widehat{x}+0 \widehat{y}$
(c) $8 \widehat{x}+10 \widehat{y}$
(d) $0 \widehat{x}-10 \widehat{y}$

Trigonometry Review

- A triangle with a 90° angle
- Pythagorean Theorem:

$$
C^{2}=A^{2}+\mathbb{B}^{2}
$$

Trigonometric Functions :

$$
\begin{aligned}
& \sin \boldsymbol{\theta}^{\circ}=\text { opp } / \text { hyp } \\
& \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}^{\circ}=\text { adj } / \text { hyp } \\
& \boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}^{\circ}=\text { opp } / \text { adj }
\end{aligned}
$$

1.2 An introduction to vectors: The Components of a Vector

Suppose a car moves along a straight line from a to c. The displacement vector is shown by $\overrightarrow{\boldsymbol{A}}$.

However, the car could also arrive at the c by first moving from a due b $\left(\overrightarrow{A_{x}}\right)$, then turning 90°, and then moving from b due $\mathrm{c}\left(\overrightarrow{A_{y}}\right)$.

$$
y \text {-axis }
$$

The vectors $\overrightarrow{A_{x}}$ and $\overrightarrow{A_{y}}$ are called the \mathbf{x} and y vector components of $\overrightarrow{\boldsymbol{A}}$.
1.2 An introduction to vectors: The Components of a Vector

A vector $\overrightarrow{\boldsymbol{A}}$ with components A_{x} and A_{y} can written as:

$$
\vec{A}=\overrightarrow{A_{x}}+\overrightarrow{A_{y}}
$$

or

$$
\vec{A}=A_{x} \widehat{x}+A_{y} \widehat{y}
$$

Where \widehat{x} and \widehat{y} are the unite vectors:

$$
y \text {-axis }
$$

\hat{x} a vector of length one in the +x direction \hat{y} a vector of length one in the $+y$ direction
1.2 An introduction to vectors: The Components of a Vector

The x-component of a vector is the projection along the x axis

$$
A_{x}=A \cos \theta
$$

The y-component of a vector is the projection along the y-axis

$$
A_{y}=A \sin \theta
$$

Then,

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}, \theta=\tan ^{-1} \frac{A_{y}}{A_{x}}
$$

1.2 An introduction to vectors: The Components of a Vector

Example 2.1 page 30: A person walks 1 km due east. If the person then walks a second kilometer, what is the final displacement from the starting point if the second kilometer is walked : (a) due east (Ans: 2 km); (b) due west (Ans: 0); (c) due south? (Ans: $\sqrt{2} \mathrm{~km}$)

1.2 An introduction to vectors: The Components of a Vector

Example 2.2 page 32 : Find the components of the vectors \vec{A} and \vec{B} in Figs., if $\boldsymbol{A}=\mathbf{2}, \boldsymbol{\theta}$ $=30^{\circ}$ and $B=3, \phi=45^{\circ}$.
(Ans: $A_{x}=1.73, A_{y}=1.00, B_{x}=2.12$ and $B_{y}=-2.12$)

1.2 An introduction to vectors: The Components of a Vector

Suppose we wish to add vector $\overrightarrow{\boldsymbol{B}}$ to vector \vec{A}, where vector \vec{B} has components B_{x} and B_{y}. The resultant vector $\overrightarrow{\boldsymbol{C}}=\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$

$$
\begin{aligned}
& \vec{C}=\left(A_{x} \widehat{x}+A_{y} \widehat{y}\right)+\left(B_{x} \widehat{x}+B_{y} \widehat{y}\right) \\
& \vec{C}=\left(A_{x}+B_{x}\right) \widehat{x}+\left(A_{y}+B_{y}\right) \widehat{y}
\end{aligned}
$$

Because $\overrightarrow{\boldsymbol{C}}=\boldsymbol{C}_{\boldsymbol{x}} \widehat{x}+\boldsymbol{C}_{\boldsymbol{y}} \widehat{y}$ we see that the
 components of the resultant vector are :

$$
C_{x}=A_{x}+B_{x} \quad C_{y}=A_{y}+B_{y}
$$

1.2 An introduction to vectors: The Components of a Vector

In the component method of adding vectors, we add all the x-components together to find the x-component of the resultant vector and use the same process for the y-components.
The magnitude of $\overrightarrow{\boldsymbol{C}}$ and the angle it makes with the x axis are obtained from its components using the relationships

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}}
$$

And

$$
\theta=\tan ^{-1} \frac{C_{y}}{C_{x}} \theta=\tan ^{-1} \frac{A_{y}+B_{y}}{A_{x}+B_{x}}
$$

1.2 An introduction to vectors: The Components of a Vector

Example 2.3 page 32:

$$
\vec{A}=\mathbf{2} \widehat{x}+\widehat{y}, \vec{B}=4 \widehat{x}+7 \hat{y}
$$

(a) Find the components of $\overrightarrow{\boldsymbol{C}}=\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ (Ans: $C_{x}=6$ and $C_{y}=8$)
(b) Find the magnitude of $\overrightarrow{\boldsymbol{C}}$ and its angle $\boldsymbol{\theta}$ with respect to the positive x axis (Ans: $C=10$ and $\boldsymbol{\theta}=53.1$)

- Homework 2

Ch2: [2.1, 2.3, 2.4, 2.5.2.14]
Final Answers: $2.4[\mathbf{a}(7.07), \mathbf{b}(3.16), \mathbf{c}(8.25)], 2.14[\mathbf{a}(5.91,35.5$ above $+\mathbf{x})$, b(19.30, below $+\mathbf{x})$]

