

Physics L3

Wiam Al Drees

Al-imam Muhammad Ibn Saud Islamic University

What are we going to talk about today?

Ch 2 : Motion in Two Dimension

- 2.1 An Introduction to vectors:
 - Vectors and Scalars
 - Drawing vectors
 - Multiplying vector by scalar
 - Addition and subtraction of vectors
 - The components of a vector
 - Vector Addition by Components

1.2 An introduction to vectors : Scalars quantities

1.2 An introduction to vectors : Vector quantities

For example: Displacement (3 m, N).
 Velocity (100 m/s, WS).
 Force (50 N, W).

• Vectors are typically illustrated by drawing an **ARROW** above the symbol, e.g. :

$$\vec{v}, \vec{x}, \vec{a}, \vec{F}$$

₩◄

Riyadh

50 N

Jeddah

A vector quantity represented by an arrow. The length of the vector represents the magnitude and the arrow indicates the direction of the vector.

The point A is often called the "tail" of the vector, and B is called the vector's "head".

Magnitude: The magnitude of a vector is the length of the vector, it is a numerical value with units, the magnitude of a vector \vec{b} is written as \vec{b} or $|\vec{b}|$

1.2 An introduction to vectors : Drawing vectors (Direction)

 $\vec{g}, \gamma = 230^{o}$

Direction: Expressed as an angle measured clockwise from the positive y-axis x-axis 120 110 100 90 80 $\vec{r}, \theta = 30^{o}$ 70 60 $\vec{b}, \alpha = 150^{o}$ S $\hat{\mathcal{O}}_{\mathcal{O}}$ 20 \mathcal{D} R in. 760 \mathcal{B} 170 ÷. \frown x-axis ω δ, τ_ 8 350 340 $ec{p}$, $oldsymbol{eta}=200^{o}$ 2 Ś Z der. 05 \vec{o} . $\lambda = 330^{\circ}$ ද 300 580 580 540 580 580

1.2 An introduction to vectors : Drawing vectors (Direction)

Two vectors are equal if they have the same direction and magnitude.

A unit vector

- Has magnitude 1
- **.** Has a particular direction
- **.** Lacks both dimension and unit
- So Is labeled with a hat (^): \hat{x} , \hat{y} and \hat{z}

Where:

 \hat{x} a vector of length one in the +x direction \hat{y} a vector of length one in the +y direction \hat{z} a vector of length one in the +z direction The unit vectors point along axes.

1.2 An introduction to vectors : Multiplying vector by scalar

- Multiplying a vector by m, increases its magnitude by a factor of m, but does not change its direction.
- Multiplying a vector by (-m), increases its magnitude by a factor of m and the direction changes to the opposite direction.
- e.g. m=3

Addition vectors: The vector sum of two vectors in a plane is obtained by placing the tail of the second vector at the head of the first vector

The resultant vector $\vec{R} = \vec{a} + \vec{b}$ is the vector drawn from the tail of \vec{a} to tip of \vec{b} .

$$ec{R} = ec{a} + ec{b} = ec{b} + ec{a}$$
 (commutative law)

subtraction vectors: To subtract a vector \vec{a} from a vector \vec{b} reverse the direction \vec{b} of and then add the reversed \vec{b} to \vec{a}

$$\vec{R} = \vec{a} + (-\vec{b})$$

$$\vec{a} + (-\vec{b}) \neq \vec{b} + (-\vec{a})$$

Ex1: Using the graphical method find the following : (Find the resultant)

$$\vec{R}_1 = \vec{a} + \vec{a} = 2\vec{a}$$
 $\vec{R}_2 = \vec{a} + (-\vec{a}) = 0$

Ex2: Using the graphical method find the following : (Find the resultant)

$$\vec{R}_1 = \vec{a} + \vec{b} \qquad \vec{R}_2 = \vec{a} + \left(-\vec{b} + \vec{a}\right)$$

$$\vec{d}$$

Ex3: Using the graphical method find the following : (Find the resultant)

$$\vec{R}_1 = \vec{a} + \vec{b} + \vec{c}$$
 $\vec{R}_2 = \vec{a} + (-\vec{b}) + \vec{c}$

1.2 An introduction to vectors

Checkpoint 1: If a vector $\vec{A} = 4\hat{x} - 5\hat{y}$ and $\vec{B} = 4\hat{x} + 5\hat{y}$, then $\vec{A} - \vec{B} = ...$ (a) $0\hat{x} - 10\hat{y}$ (b) $8\hat{x} + 0\hat{y}$ (c) $8\hat{x} + 10\hat{y}$ (d) $0\hat{x} - 10\hat{y}$

Trigonometry Review

- A triangle with a 90° angle
- Pythagorean Theorem:

$$\mathbf{C}^2 = \mathbf{A}^2 + \mathbf{B}^2$$

Trigonometric Functions :

 $\sin \theta^{\circ} = \operatorname{opp} / \operatorname{hyp}$ $\cos \theta^{\circ} = \operatorname{adj} / \operatorname{hyp}$ $\tan \theta^{\circ} = \operatorname{opp} / \operatorname{adj}$

Suppose a car moves along a straight line from a to c. The displacement vector is shown by \vec{A} . However, the car could also arrive at the c by first moving from a due b θ° $(\overrightarrow{A_{\chi}})$, then turning 90^o, and then $\overrightarrow{A_{\chi}}$ a moving from **b** due c $(\overrightarrow{A_v})$.

The vectors $\overrightarrow{A_x}$ and $\overrightarrow{A_y}$ are called the **x** and **y vector components of** \overrightarrow{A} .

A vector \vec{A} with components A_x and A_y can written as:

$$\overrightarrow{A} = \overrightarrow{A_x} + \overrightarrow{A_y}$$

or

$$\vec{A} = A_x \hat{x} + A_y \hat{y}$$

Where \hat{x} and \hat{y} are the unite vectors:

 \hat{x} a vector of length one in the +x direction \hat{y} a vector of length one in the +y direction

The x-component of a vector is the projection along the x axis

 $A_x = A \cos \theta$

The y-component of a vector is the projection along the y-axis

$$A_{v} = A \sin \theta$$

Then,

$$A = \sqrt{A_x^2 + A_y^2}$$
, $\theta = \tan^{-1} \frac{A_y}{A_x}$

Example 2.1 page 30: A person walks 1 km due east. If the person then walks a second kilometer, what is the final displacement from the starting point if the second kilometer is walked : (a) due east (Ans: 2 km); (b) due west (Ans: 0); (c) due south? (Ans: $\sqrt{2}$ km)

Example 2.2 page 32: Find the components of the vectors \vec{A} and \vec{B} in Figs., if $A = 2, \theta$ $= 30^{\circ} \text{ and } B = 3, \phi = 45^{\circ}.$ (Ans: $A_x=1.73$, $A_y=1.00$, $B_x=2.12$ and $B_y=-2.12$) y-axis \vec{A} $\overrightarrow{A_v}$ θ° x-axis $\overrightarrow{A_x}$ $\overrightarrow{B_{\chi}}$ x-axis ф⁰ $\overrightarrow{B_{\nu}}$ \overrightarrow{B} 34 y-axis

Suppose we wish to add vector \vec{B} to vector \vec{A} , where vector \vec{B} has components B_x and B_y . The resultant vector $\vec{C} = \vec{A} + \vec{B}$

$$\vec{C} = (A_x \hat{x} + A_y \hat{y}) + (B_x \hat{x} + B_y \hat{y})$$
$$\vec{C} = (A_x + B_x) \hat{x} + (A_y + B_y) \hat{y}$$

Because $\vec{C} = C_x \hat{x} + C_y \hat{y}$ we see that the components of the resultant vector are :

$$C_x = A_x + B_x$$
 $C_y = A_y + B_y$

In the component method of adding vectors, we add all the x-components together to find the x-component of the resultant vector and use the same process for the y-components. The magnitude of \vec{C} and the angle it makes with the x axis are obtained from its components using the relationships

$$C = \sqrt{C_x^2 + C_y^2} = \sqrt{(A_x + B_x)^2 + (A_y + B_y)^2}$$

And

$$\theta = \tan^{-1} \frac{C_y}{C_x} \theta = \tan^{-1} \frac{A_y + B_y}{A_x + B_x}$$

36

Example 2.3 page 32:

$$\vec{A} = 2\hat{x} + \hat{y}, \vec{B} = 4\hat{x} + 7\hat{y}$$

- (a) Find the components of $\vec{C} = \vec{A} + \vec{B}$ (Ans: $C_x = 6$ and $C_y = 8$)
- (b) Find the magnitude of \vec{C} and its angle θ with respect to the positive x axis (Ans: C=10 and $\theta=53.1$)

Name:

Homework 2

Ch2: [2.1, 2.3, 2.4, 2.5, 2.14]

Final Answers: 2.4 [a(7.07), b(3.16), c(8.25)], 2.14 [a(5.91, 35.5 above + x), b(19.30, below + x)]