
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MG

Graw

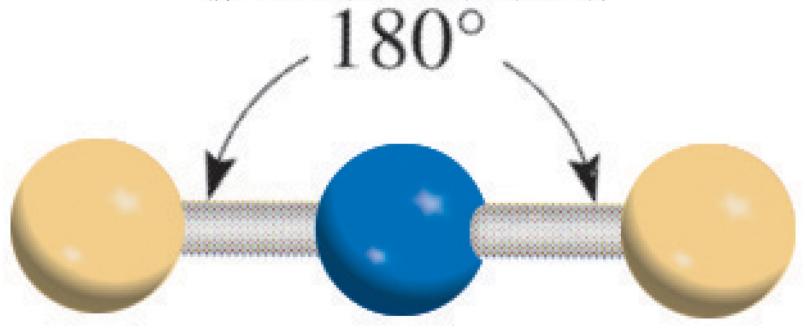
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1

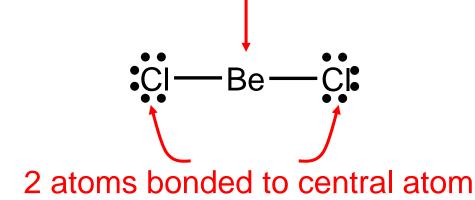
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chapter 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Valence shell electron pair repulsion (VSEPR) model:

Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs.


Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_2	2	0	linear 180°	linear
				в АВ

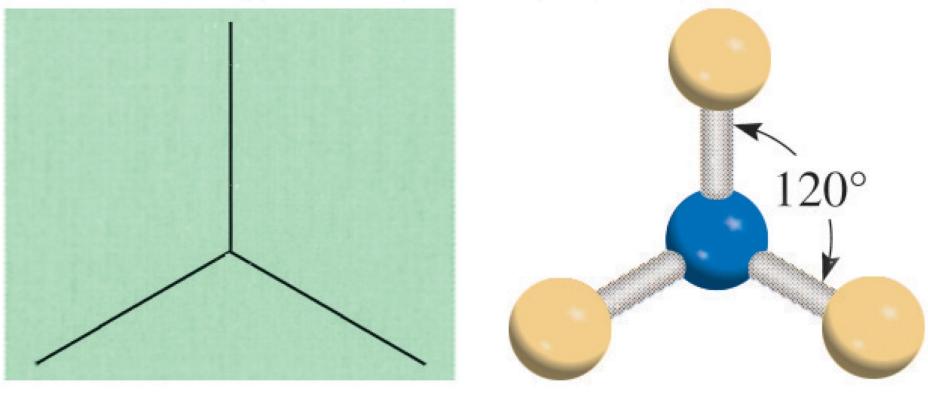
Beryllium Chloride

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

0 lone pairs on central atom

Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB ₂	2	0	linear	linear
AB ₃	3	0	trigonal planar	trigonal planar

,Α,

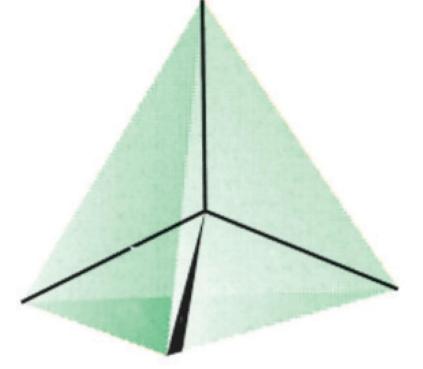

B

٠

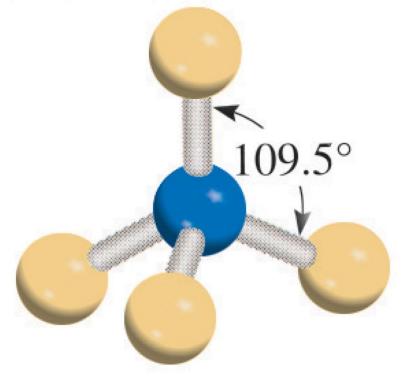
B

Boron Trifluoride

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

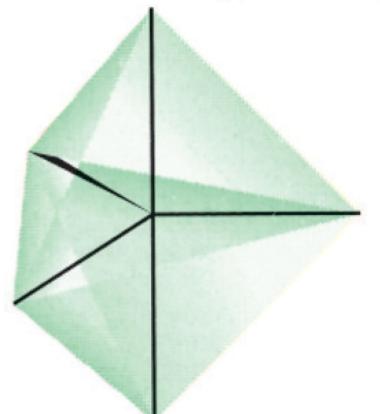


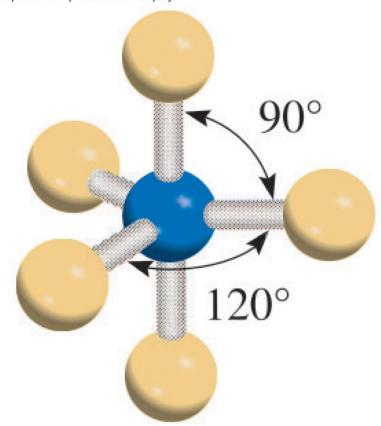
Planar


Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetrahedral	tetrahedral
			109.5°	B B B

Methane

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

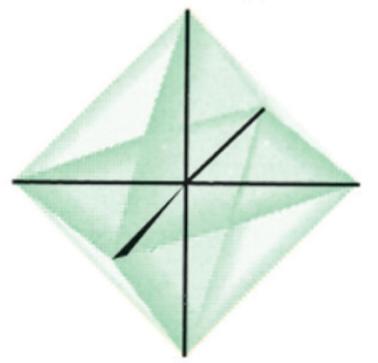

Tetrahedral

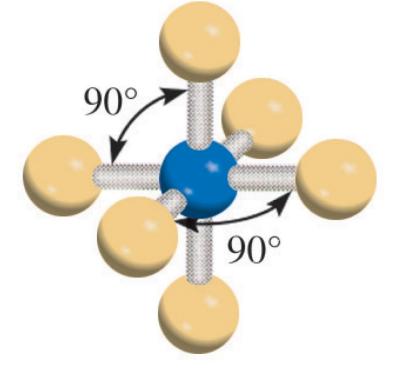


Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetrahedral	tetrahedral
AB_5	5	0	trigonal bipyramidal	trigonal bipyramidal
			: 120° 	B A B B B B B B B B B B B B B B B B B B

Phosphorus Pentachloride

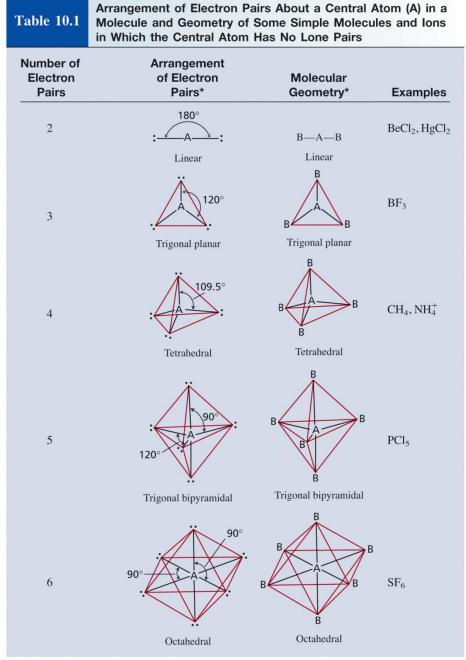
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



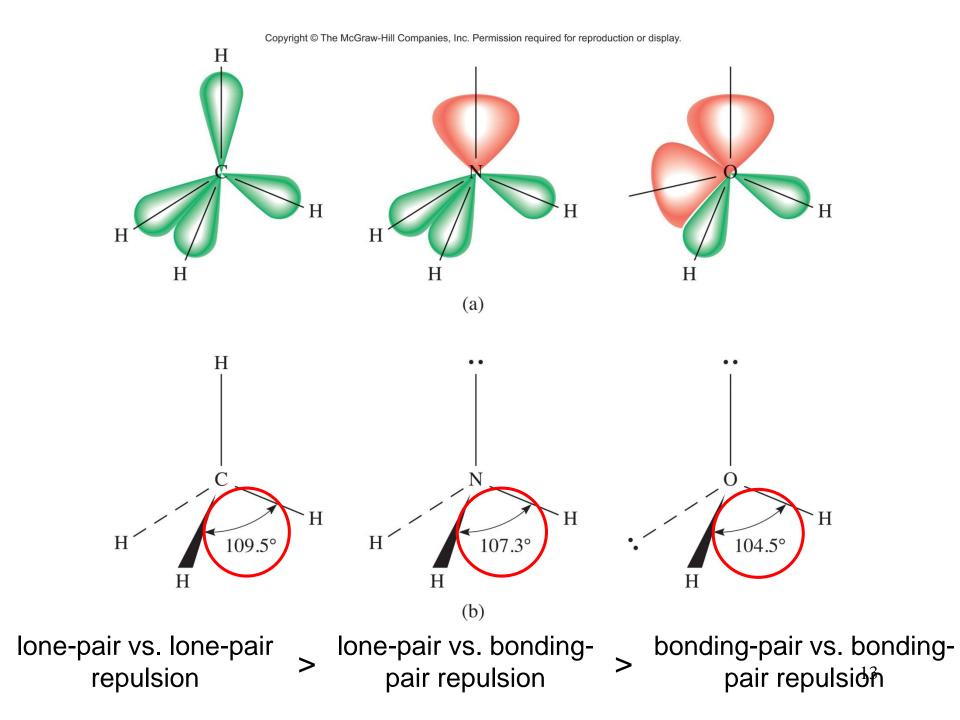

Trigonal bipyramidal

Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetrahedral	tetrahedral
AB_5	5	0	trigonal bipyramidal	trigonal bipyramidal
AB_6	6	0	octahedral	octahedral
			90° 	B B B B B B B

Sulfur Hexafluoride



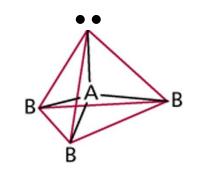
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

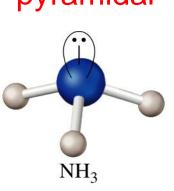


Octahedral

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

*The colored lines are used only to show the overall shapes; they do not represent bonds.


Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_3	3	0	trigonal planar	trigonal planar
AB_2E	2	1	trigonal planar	bent
			Å	


SO₂

B

ВŹ

Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_4	4	0	tetrahedral	tetrahedral
AB_3E	3	1	tetrahedral	trigonal pyramidal

Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_4	4	0	tetrahedral	tetrahedral
AB_3E	3	1	tetrahedral	trigonal pyramidal
AB_2E_2	2	2	tetrahedral	bent
			B B B	H ₂ O

Table 10	.2 Geometry of or More Lone		es and lons i	n Which the Centr	al Atom Has One	
Class of Molecule	Total Number of Electron Pairs	Number of Bonding Pairs	Number of Lone Pairs	Arrangement of Electron Pairs*	Geometry of Molecule or Ion	Examples
AB ₂ E	3	2	1	B B Trigonal planar	Bent	SO ₂
AB3E	4	3	1	$B \xrightarrow{A}_{B} B$ B Tetrahedral	Trigonal pyramidal	NH ₃
AB ₂ E ₂	4	2	2	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	Bent	H ₂ O
AB4E	5	4	1	Trigonal bipyramidal	Distorted tetrahedron (or seesaw)	SF4
AB ₃ E ₂	5	3	2	B A B Trigonal bipyramidal	T-shaped	CIF ₃
AB ₂ E ₃	5	2	3	B B Trigonal bipyramidal	Linear	
AB5E	6	5	1	B B Octahedral	Square pyramidal	BrF5
AB ₄ E ₂	6	4	2	$B \xrightarrow{B} B$	Square planar	XeF ₄

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

*The colored lines are used to show the overall shape, not bonds.

Predicting Molecular Geometry

- 1. Draw Lewis structure for molecule.
- 2. Count number of lone pairs on the central atom and number of atoms bonded to the central atom.
- 3. Use VSEPR to predict the geometry of the molecule.

Use the VSEPR model to predict the geometry of the following molecules and ions:

(a) AsH₃

(b) OF₂

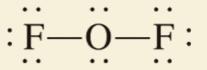
(c) $AICI_4^-$

(d) l₃⁻

(e) C_2H_4

Strategy The sequence of steps in determining molecular geometry is as follows:

 $\begin{array}{ccc} \text{draw Lewis} \longrightarrow \text{find arrangement of} \longrightarrow \text{find arrangement} \longrightarrow & \text{determine geometry} \\ \text{structure} & \text{electron pairs} & \text{of bonding pairs} & \text{based on bonding pairs} \end{array}$

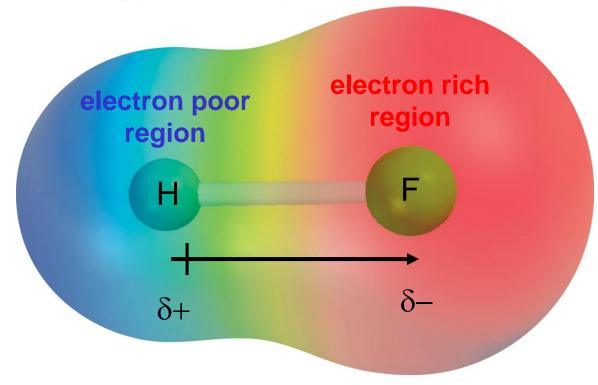

Solution

(a) The Lewis structure of AsH_3 is

There are four electron pairs around the central atom; therefore, the electron pair arrangement is tetrahedral (see Table 10.1).

Recall that the geometry of a molecule is determined only by the arrangement of atoms (in this case the As and H atoms). Thus, removing the lone pair leaves us with three bonding pairs and a trigonal pyramidal geometry, like NH₃. We cannot predict the HAsH angle accurately, but we know that it is less than 109.5° because the repulsion of the bonding electron pairs in the As—H bonds by the lone pair on As is greater than the repulsion between the bonding pairs.

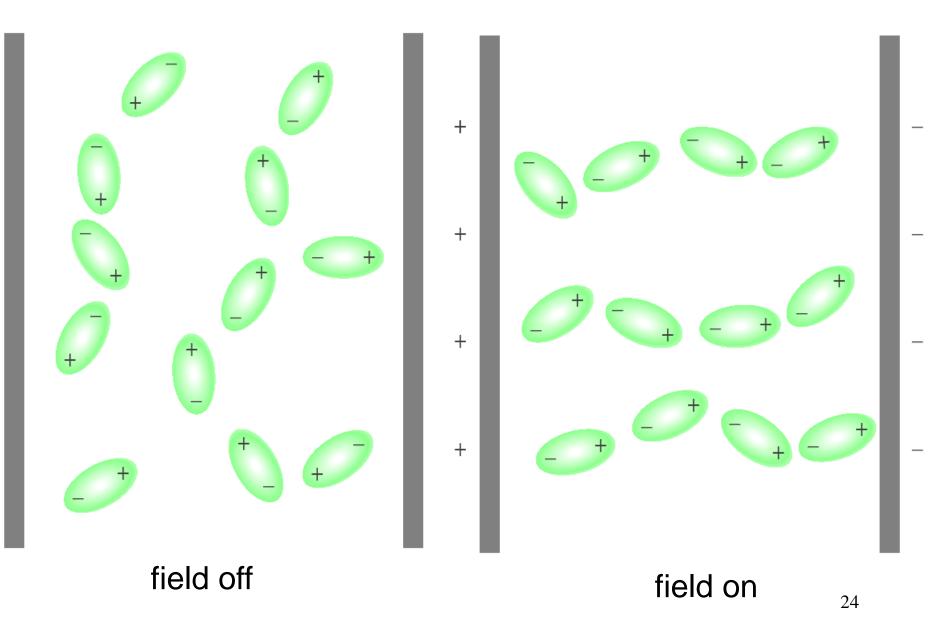
(b) The Lewis structure of OF₂ is

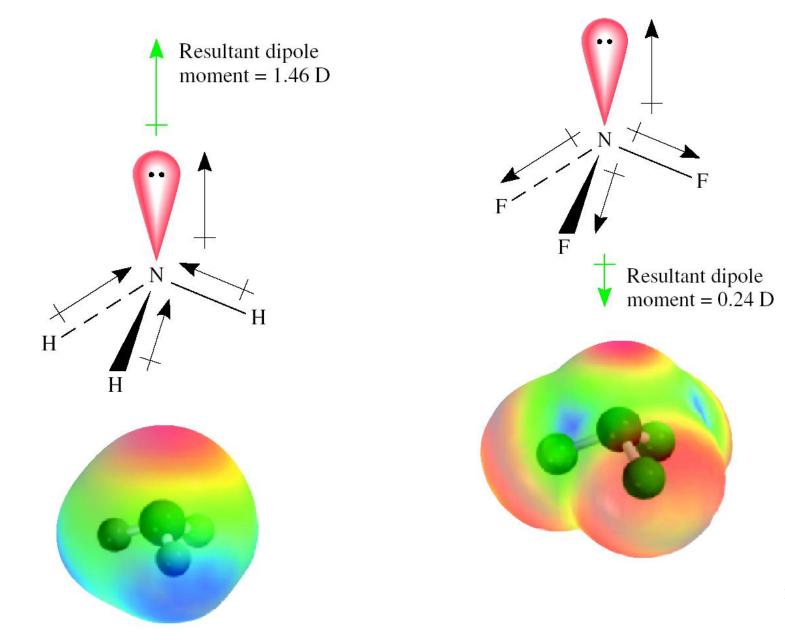

There are four electron pairs around the central atom; therefore, the electron pair arrangement is tetrahedral.

Recall that the geometry of a molecule is determined only by the arrangement of atoms (in this case the O and F atoms). Thus, removing the two lone pairs leaves us with two bonding pairs and a bent geometry, like H_2O . We cannot predict the FOF angle accurately, but we know that it must be less than 109.5° because the repulsion of the bonding electron pairs in the O–F bonds by the lone pairs on O is greater than the repulsion between the bonding pairs.

(c) The Lewis structure of $AICI_4^-$ is

Dipole Moments and Polar Molecules


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

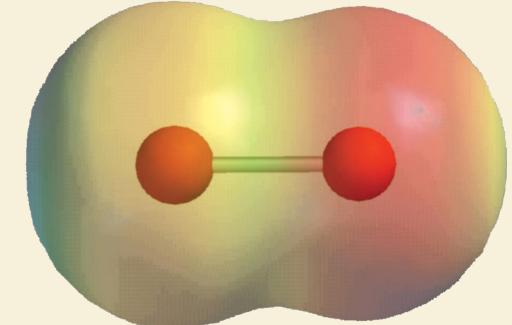

 $\mu = \mathbf{Q} \times \mathbf{r}$

Q is the charge r is the distance between charges $1 D = 3.36 \times 10^{-30} C m$

Behavior of Polar Molecules

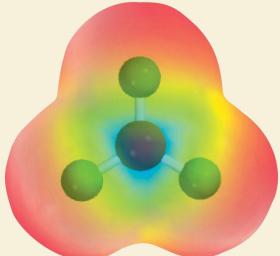
Bond moments and resultant dipole moments in NH_3 and NF_3 .

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Table 10.3Dipole Moments of Some Polar Molecules

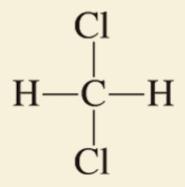
Molecule	Geometry	Dipole Moment (D)
HF	Linear	1.92
HC1	Linear	1.08
HBr	Linear	0.78
HI	Linear	0.38
H_2O	Bent	1.87
H_2S	Bent	1.10
NH ₃	Trigonal pyramidal	1.46
SO_2	Bent	1.60

Br-Cl

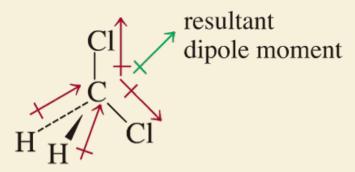

Solution

(a) Because bromine chloride is diatomic, it has a linear geometry. Chlorine is more electronegative than bromine (see Figure 9.5), so BrCl is polar with chlorine at the negative end

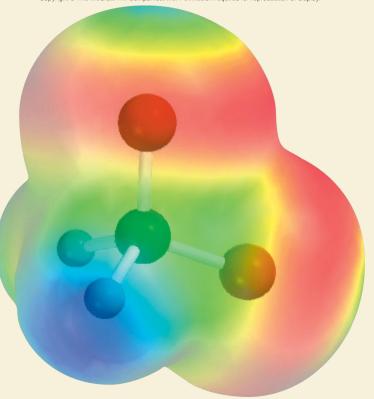
Thus, the molecule does have a dipole moment. In fact, all diatomic molecules containing different elements possess a dipole moment.


(b) Because fluorine is more electronegative than boron, each B-F bond in BF_3 (boron trifluoride) is polar and the three bond moments are equal. However, the symmetry of a trigonal planar shape means that the three bond moments exactly cancel one another:

An analogy is an object that is pulled in the directions shown by the three bond moments. If the forces are equal, the object will not move. Consequently, BF_3 has no dipole moment; it is a nonpolar molecule.


 \longrightarrow Br—Cl

(c) The Lewis structure of CH_2CI_2 (methylene chloride) is


This molecule is similar to CH_4 in that it has an overall tetrahedral shape. However, because not all the bonds are identical, there are three different bond angles: HCH, HCCI, and CICCI. These bond angles are close to, but not equal to, 109.5°.

Because chlorine is more electronegative than carbon, which is more electronegative than hydrogen, the bond moments do not cancel and the molecule possesses a dipole moment:

Example 10.2

Thus, CH_2CI_2 is a polar molecule.

